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Technological Progress and the Earnings of Older Workers 

Abstract 

Economists’ standard model assumes that improvements in total factor productivity (TFP) raise 
the marginal product of labor for all workers evenly. This paper uses an earnings dynamics 
regression model to study whether, in practice, older workers benefit less from TFP growth than 
younger workers. We utilize panel earnings data from the Social Security Administration’s 
Continuous Work History Sample. The data include workers of all ages, and we use annual 
figures for 1950-2004. Our first specification relies on BLS measurements of TFP. Our second 
model develops a new TFP measure using a principal components analysis. We find that 
although the earnings of younger workers track TFP growth 1-for-1, the earnings of older 
workers do not: we find, for example, that a 60-year-old male’s earnings grow only 85-90% as 
fast as TFP. Nevertheless, our analysis implies that in an economy with an aging labor force, 
gains from experience tend to outweigh older workers’ inability to benefit fully from TFP 
improvements. 
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Technological Progress and the Earnings of Older Workers 

Yuriy Gorodnichenko, John Laitner, Jae  Song, and  Dmitriy Stolyarov

1 Introduction. This paper examines whether the earnings of older US workers track 
overall increases in TFP as comprehensively as those of their younger colleagues. The 
US population is aging: longevity is increasing, while fertility is, if anything, trending in 
the opposite direction. If the marginal product of younger workers rises proportionately 
with TFP but the marginal product of older workers lags behind, then innovation will, 
in effect, tend to diffuse more slowly as the labor force ages. Retirement timing may be 
influenced as well. In general, as longevity rises, we expect both work lives and retirement 
spans to increase. Workers’ optimal allocations of extra years of life between career and 
retirement  will,  however,  be sensitive  to  the rate of pay  available.  In  fact,  we  find that the 
pay of older US employees does not follow TFP growth as closely as the remuneration of 
younger workers – though the difference is, perhaps, surprisingly small – and we attempt 
to provide quantitative assessments of the likely impact on the economy. 

We use an earnings dynamics model. A large literature provides estimates of such 
models (e.g., Lillard and Willis [1978], Lillard and Weiss [1979], Hause [1980], and 
MaCurdy [1882], as well as more recent work by Baker [1997], Haider [2001], Baker and 
Solon [2003], Guvenen [2007], Altonji et al. [2009], and many others).  In a typical speci-
fication, a worker’s wage, or earnings, at age s and time t, say,  wst, rises with experience 
and time: 

ln(wst) =  φ(s) +  ψ(s ,  t) . (1) 

The first right-hand side term captures the effect of human capital. Human capital typically 
rises with experience, hence, with age; thus, in the case of younger workers, we expect 
φI(s) > 0. At older ages, on the other hand, declining health and/or depreciation of 
human capital might cause φI(s) < 0. 

The second right-hand side term registers the effect of growth in overall  total factor
productivity (TFP). Following Solow [1956], we expect ∂ψ(s ,  t)/∂t > 0. The earnings dy-
namics literature normally assumes that the influence of TFP is independent of a worker’s 
age – that is to say, it posits 

This paper investigates the alternative possibility that 
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We have access to an unusually rich set of data on worker earnings, by age, 1950-
2004, the Social Security Administration’s Continuous Work History Sample (CWHS).1,2

The data provides panel earnings from administrative records, for thousands of workers, 
providing many observations at each age, in every year. Alternative data sources such 
as the CPS or PSID lack coverage during the 1950s and early 1960s.3 To identify our 

FP growth rates to vary within model and to estimate its parameters precisely, we need T
sample. That makes the 1950s and 1960s – when TFP growth was unusually rapid (what 
Field [2011], for example, calls the “golden age of US productivity growth”) – especially 
important.4 We use the CWHS
part of condition (3). 

Our results show that the e

 data to estimate our version of (1), focusing on the second 

arnings of aging workers do not grow one-for-one with TFP 
but that the difference is quite modest. Our best results imply that the earnings of a 60 
year old follow TFP growth 85-90 percent as well as those of a 26-30 year old. About one 
half of the decline seems to run its course by age 45. In the end, the greater experiential 
human capital of older workers seems to outweigh their declining linkage to the TFP level 
– see Section 6. Hence, an aging labor force should be a more productive one.

The organization of this paper is as follows. Section 2 suggests possible reasons for 
inequality (3). Section 3 presents our theoretical framework. Section 4 describes our data. 
Section 5 presents two empirical specifications of our model and regression results for each. 
Section 6 examines the implications of the results for the US economy. Section 7 concludes. 

2 Possible Outcomes.        What outcome do we expect?

Four possibilities are as follows. 

A1: The arrival of a new technology should affect workers at the start of their careers the 
most. At the beginning of a career, we expect a worker to make a large investment in 
learning about the current techology because the payoff period is long. Near retire-
ment, the reverse holds. Thus, an optimal life-cycle investment pattern should lead 
to a younger worker having a marginal product of labor reflecting the best current 
technology, but the same may not hold for older workers. 

“Creative destruction” provides a related interpretation. Suppose, for example, 
that learning how to use a new technology yields revenue R1 to a young worker but 
costs the worker C1. If R 1 − C1 > 0, learning the new skill is profitable. An older
worker may, however, have completed such a process in the past, gaining R0 − C0 > 0.

If revenues R00 from the older technology remain (without further cost) but must be 
sacrificed upon substitution of the new technology, the older worker should only invest 
in the new skill if R1 − C1 > R00.

1 See, for example, Kopczuk, Saez and Song [2010]. 
2 Actually, the data runs 1937-2004. To avoid WWII – and because standard BLS 

TFP measurements begin in 1948 – we limit our analysis to 1950-2004. 
3 See, for instance, Laitner and Stolyarov [2005]. 
4 Field [2011, Tab. 3.6] presents cyclically adjusted TFP annual growth rates for the 

US private nonfarm economy showing 1.90 for 1948-1973, 0.34 for 1973-1989, and 0.78 for 
1989-2000. 
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A variety of manifestations of the effect of TFP growth are possible. In an 
extreme variant, a worker will devote full-time effort to investing in learning prior 
to beginning his career, but he will discontinue investment subsequently. This will 
create circumstances analogous to Solow’s [1960] model of embodied technological 
progress: although the marginal productivity of young workers will reflect the best 
current technology, the knowledge of older workers will progressively become obsolete. 
Obsolescence should be more dramatic when TFP growth is high. 

Alternatively, on-the-job training to keep up with continuous technology improve-
ments might be the rule – see, for example, Ben-Porath [1967]. At each age, a worker 
might make an optimal time allocation between production and learning. As retire-
ment approaches, the optimal allocation might shift to less time spent learning and 
more on production. In practice, workers might stay up-to-date until the last handful 
of years before retirement. 

A2: A physiological consequence of aging may be that older individuals are less adaptable 
to learning new ways of performing tasks. Hence, older workers may be unable to 
benefit as easily as the young from TFP growth. 

A3: Regardless of age, different people may have different ability to absorb new information 
and develop  ways  to  take  advantage of it.  Within a business,  some individuals may  
specialize in recognizing, learning, and adapting new technologies. They may organize 
the work of others. On the other hand, a majority of workers may not need to be 
especially good at adopting new technologies – and there may be little reason to 
expect that age is an especially important factor. 

A4: Workers and firms may agree to (implicit) long-term contracts in which the worker 
is paid less than his marginal product at first but more later (see, for example, 
Lazear [1979, 1981]). This system may leave firms with little latitude to respond to 
unforeseen changes in TFP, whether changes affect different age groups differently or 
not. Similarly, implicit contracts may promote risk sharing in which the firm absorbs 
fluctuations resulting from uneven technological progress. 

Note that answers A1-A2 seem to raise the possibility of selection processes in the 
data. It seems possible, for example, that workers who face obsolescence from rapid TFP 
growth tend to choose early retirement. In practice, the issue may be complicated, however. 
If obsolescence is predictable, then a life-cycle household might plan for early retirement, 
doing a great deal of saving in youth. But if obsolescence is random, a victimized household 
might need to extend its career in order to accumulate enough resources for a comfortable 
retirement. In theory, therefore, a household’s retirement age could either rise or fall with 
a change in TFP. 

3 Model.  As stated, we develop 2 variants of our regression model. This section presents 
the basic theoretical framework common to both. 

Our analysis is limited to working males.5 Consider male i of age s at time t. His  

Changes in female labor-force participation (especially, the participation of married 
women) during our sample period – for reasons different from the central concerns of this 
paper – are well-known. 
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Yt =[Kt]
α · [Et]1−α 

1 
1−α Q

]1−α≡[Kt]
α · [Tt · L . (5) t 

E t 
w = . (6) t ∂Et 

∂Y

1 θ1 θSTt−S+1 Tt E1−α 1−αwist = ξi · His · [Tt−S ] · [ ] 1−α · ... · [ ] · wt . (7) 
Tt−S Tt−1 

1 E1−αwist = ξi · His · [Tt] · w .t 

6wage is wist. The latter depends on individual ability, ξi; human capital; His; techno-
logical progress; and, the wage rate per efficiency unit of labor, wE . Let  LQ 

be labor t t 
input corrected for human capital (i.e., experience and education) and gender. Let Tt be 
aggregative total factor productivity (TFP). If Yt is output and Kt the physical capital 
stock, assume7 

Q
]1−αYt = Tt · [Kt]

α · [L , α ∈ (0 , 1) .t 

If Et is labor input measured in effective units, 

Let 

Suppose at a base age, say, 25, all workers can benefit fully from TFP growth. Then 
set S = S(s) ≡ s − 24, so that S measures career years since the base age, starting with 
S =  1  at  the base age.  Assume  

If workers of all ages benefit fully from technological progress, we have 

θx = 1  all  x = 1  , ... , S .  

Then 

Section 2 suggests, however, the possibility that 

1 ≥ θ1 ≥ ... ≥ θS . (8) 

6 Because of data availability, the empirical analysis depends upon earnings rather than 
wage rates. See the discussion in Section 4 below. 
7 Rather than write the production function as 

]1−αtA · [Kt]
αt · [LQ 

,t 

Q
we have included A in Lt . 
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T ∗ 1 
1−α [Tt] and ∆ ln(T ∗ ) = ln(T ∗ )  ln(Tt

∗
1) .t t t ≡ − −

If some of the inequalities in (8) are strict, older workers benefit from technological progress 
less than younger workers. 

Use the notation 

∆ ln(wist)  ln(wist)  ln(wi,s 1,t 1) . ≡ − − −

Let 

Similarly, let 

∆ ln(His) =  ln(His) − ln(Hi,s−1) . 

Then (7) implies 

E∆ ln(wist) =  ∆ ln(His) +  θS(s)  ∆ ln(T ∗ ) +  ∆ ln(w ) . (9) t t ·
We assume that the human capital term, ∆ ln(His), originates from a combination of 

schooling and experience at work. We consider several possible formulations. 
The first follows most of the earnings dynamics literature in modeling ln(His) with a  

polynomial in years of work experience, x, with  coefficients depending upon the schooling 
of individual in question. We expect the polynomial to rise at low levels of experience, and 
to level off or fall at high levels. 

Consider 4 education categories: 

E ≡ {less than high school, high school, some college, college} . 
Let school(e) give the average number of years of schooling in category e ∈ E . Assume 
that if worker i has education e = ei, then  

x = x(s ,  ei) ≡ s − school(ei) − 6 . (10) 

If we use a quadratic,8 

p2(ei)
ln(His) =  p0(ei) +  p1(ei) · x(s ,  ei) +  · [x(s ,  ei)]2 . 

2 

Then ⎧ ⎨ p1(ei) + [p2(ei)/2] · [2 · x(s ,  ei) − 1] , for x(s ,  ei) ≥ 1 , 
∆ ln(His) =  (11)⎩ 

0 , otherwise . 

We expect 

The earnings dynamics literature sometimes favors a quartic. A quartic would not 
fundamentally change our analysis below. 
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p1(e) =  p1 and p2(e) =  p2 all e ∈ E . 

⎨ p1 + [p2/2] · [2 · x(s ,  ei) − 1] , for x(s ,  ei) ≥ 1 , 
∆ ln(His) =  (13)⎩ 

0 , otherwise . 

∆ ln(His) =  p1 + [p2/2]  [2  s  1] . (14) 

E Yt Kt Kt 
1−αw = (1  − α) · = (1  − α) · [ ]α = (1  − α) · [ ] 
α 
. (15)t Et Et Yt 

p1(e) > 0 and  p2(e) < 0 all  e   . (12) ∈ E
The second formulation is a streamlined version of the first. We work exclusively 

with differenced data; hence, the influence of education on the level of a worker’s earnings, 
that is to say, the parameter p0(e), never enters our analysis. Anticipating that remaining 
effects of education may be subtle, the second formulation imposes 

In place of (11), we have ⎧ 

The third formulation continues to employ p1 and p2, but it uses age, s, in place of

experience, x. Then  
               

· · −
In practice, workers of a given age who have less schooling will tend to have more years of 
work experience. A possible justification for (14), nevertheless, is that more of the early 
career years of the less educated may be spent on apprenticeships than would be the case 
for, say, university graduates. 

Finally, from (5)-(6), 

4 Data.  We use data from 3 sources: administrative panel data from SSA on individual 
workers’ year-by-year earnings, Census data on worker education by year and age, and 
BLS data on wages  per efficiency unit of labor and TFP growth. 

SSA data on workers’ earnings. With generous cooperation from SSA, we have obtained 
access to administrative panel data on worker earnings – classified by age, year, sex, and 

9race.

The data come from the 1% CWHS 1951-2004; the LEED 1957-2004 (which provides 
employer information); and, the 0.1% CWHS 1937-1977. See Kopczuk et al. [2010] and 
Kopczuk et al. Web Appendix. Kopczuk et al. [2010] utilize earnings estimates above the 
Social Security tax cap for years prior to 1978 (after 1978, W2 data becomes available).10 

9 A number of studies compare administrative records with survey measures – e.g.,

Haider and Solon [2006], Bound et al. [2001], Moore et al. [1997], and Bound and 
Krueger [1991]. 
10 The earnings estimates prior to 1978 utilize information on the quarter in which a 
worker reached the tax cap. 
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9ln(wst) ≡ ln(wst) + ln(1  +  bt) − ln(pcet) . 

Kopczuk et al. provide occupational filters to correct for poorly represented groups in early 
years (see Kopczuk et al. Web Appendix); and, they correct for coding errors 1978-1980. 
With the assistance of SSA, we have been able to take advantage of all of these steps. 

We have obtained access to log earnings figures for all males, and all white males, 
averaged for age/year cells (s ,  t), s = 24  , ...  ,  75, t = 1949 , ...  ,  2004. Call a cell’s average 
value 

9ln(wst) . 
The data set does not include work hours. We employ 3 filters to minimize the effect 

of part-time work, especially part-time work near retirement. We can also adjust the ages 
at which our sample starts and stops. The filters are: 

•	 Use minimum wages from http://www.ssa.gov/policy/docs/statcomps/supplement/, 
Table 3.B3, col. 1, to exclude wist if 

wist < 1800 × min wage year t .  

•	 Let lasti be the minimum of the last age male i is alive and the last age at which 
male i has positive earnings. Then drop wist if s ≥ lasti − 1. 

•	 We work below with log differences: ∆ ln(wist) ≡ ln(wist) − ln(wi,s−1,t−1). When 
the actual difference is positive, set ∆ ln(wist) equal to the minimum of the actual 
difference and 1. When the actual difference is negative, use the maximum of the 
actual difference and -1. 

Given the filters, we treat our Social Security earnings as perfectly collinear with 
wages. 

The Social Security tax  base  (and, hence, our earnings data) excludes fringe benefits, 
such as employer provided medical insurance, employer contributions to pension accounts, 
and employer share of payroll taxes.11 Using NIPA Table 1.12, we compute the ratio of 
supplements to wages and salaries (Table 1.12, line 6) to wage and salary accruals (line 
3). Calling the ratio bt, and letting pcet be the NIPA personal consumption price index 
(Table 1.1.4), we set 

Census data on worker’s education. We use IPUMS Census and IPUMS CPS data from 
www.ipums.org/ to determine the distribution of male education levels. 

For working males, and for white working males, we determine fractions ωst(e) in  
education category e ∈ E for s = 29  , ... , 60, t = 1949  , ... , 2004. We use IPUMS Census 
data for 1950 and 1960, and IPUMS CPS data for 1962-2004 – linearly interpolating the 
missing years. 

Notice that the Social Security tax base is almost the same as the base for the federal 
income tax – except for less than 100 percent participation in OASI and the Social Security 
tax cap. See, for example, CBO [2005]. 
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∆ ln(wst) ≡ ln(wst) − ln(ws−1,t−1) . 

9∆ ln(Hs)  ln(Hs)  ln(H9 
s 1) . 

E∆ ln(Wst) ≡ ∆ ln(wst) − ∆ ln(w ) . (16)t 

3 3 
1 2∆ ln(Hs) = w (e) · p1(e) +  w (e) · p2(e) , (17)st st

e∈E e∈E 

ln(wist) − ln(wi,s−1,t−1)i∆ ln(wst) ≡ +ln(1+  bt) − ln(1 + bt−1) − ln(pcet)+ ln(pcet−1) . 
#i 

EBLS data on TFP  growth.  We use  BLS data to derive ln(Tt) and  ln(w ) for (9).12 
t 

From http://www.bls.gov/mfp/mprdload.htm, go to the “Historical Multifactor Pro-
ductivity Measures” section. Opening the spreadsheet mfp tables historical.xls, find the 
tables for the private non-farm business sector. Table 2.1, col 2, provides measurements 
of Yt/Kt; Table 4.2, col 5, provides the same for Tt. Although Table 4.1, col. 2, provides 
data 1948-2010 for αt, to stay in a standard framework we follow Gollin [2002] and others 
in setting α = 0.25. 

5 Empirical Analysis. Our 2 empirical formulations both begin with (9). 
Our SSA data average log earnings over individuals i for each (age , time) = (s ,  t) 

cell, and we want to perform such averaging for each term in (9). As in Section 4, let 
ln(wst) be average log earnings for a given cell, corrected for benefits and the price index. 

13Define

Similarly, letting a tilde designate an average over i, 

≡ − −

As there is nothing to estimate in the last term of (9), the dependent variable in our 
regression analysis is 

Our Census data enables us to compute the fraction of workers of age s at time t who 
have education e.  As in Section 4, call the  fraction  ω1 (e). Then st

where 

ω2 (e)  ω1 (e)  [x(s ,  e)  0.5] .st st≡ · −
12 Earlier work with data from Fernald – see http://www.frbsf.org/csip/tfp.php and 
Basu et al. [2006] – did not yield different results. 
13 To be precise, we have panel data – and we only use households in our log-differences 
that appear in both components of the difference. Thus, strictly speaking, 

� 
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∆ ln(Ws,tI )s∆ ∗ ln(Wst) ≡ ∆ ln(Wst) − 
I 

#tI 
, 

tI ∆ ln(Tt
∗ 
I )

∆ ∗ ln(T ∗ ) ≡ ∆ ln(T ∗ ) − 
#tI 

.t t 

Our second specification makes p1(e) and  p2(e) independent of e. Under our third specifi-� 
cation, we replace ω1 (e) · p1(e) with a constant and x in ω2 (e) with  s. e∈E st st

In fact, the 3 possible specifications yield similar results for the other parts of our 
earnings dynamics equation. Hence, this paper reports results exclusively for an age-based 
specification. 

In practice, we settle on a nonparametric approach. In place of ∆ ln(Hs), we use a 
separate dummy βs for each age. This makes our key estimates, namely, θS , independent of 
the human capital description. In other words, given the separate age dummies, subtracting 
the mean from ∆ ln(T ∗) does not  affect estimates of θ, but it makes the regressors for βst 
and θS orthogonal to one another.
 

Formulation I. Our  first regression equation is
 

∆ ln(Wst) =  βs + θS  ∆ ln(Tt 
∗ ) +  6st , (18) ·

where we allow  a separate  θS each S, and a separate βs each s. The regression error 
is 6st. The latter presumably reflects omitted variables, inaccuracies in the components 

Eof w , inaccuracies in the price discounting of wages and the attribution of benefits, the t 
discrepancy between wage rates and earnings, etc. At this point, assume ln(T ∗) on the  t 
right-hand side of (18) is accurately measured. 

The top 3 panels of Table 1 provide information about the sample. As we would 
expect, the top panel shows faster earnings growth at young ages, where the percentage 
growth rate of experience is highest. Panel 2 shows more rapid earnings growth during 
1950-69 than after. Comparing panels 2-3, we see  a strong correlation  between TFP  and  
earnings growth. 

Stacking the equations to pool the data, we obtain consistent estimates of βs and θS . 
Table 2 presents the estimates of βs from samples with different age ranges. As is familiar 
from the literature, the estimates of βs display the  pattern of an inverted parabola.  

This paper’s focus is θS . The regression specification that we use henceforth is as 
follows. Define � 

� 

For each s, in other words, we subtract the mean (calculated over all t). Then 

∆ ∗ ln(Wst) =  θS · ∆ ∗ ln(T ∗ ) +  6st , (19)t 

where, of course, S = S(s). OLS on (19) with pooled data yields the same parameter 
estimates, θ�S , as separate regressions 

∆ ∗ ln(Wst) =  θS · ∆ ∗ ln(Tt 
∗ ) +  6st all t (20) 

for each s. 
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Table 1. Sample Information 

Variable Mean Coef. Var. Min Max 

Earnings data, ∆ ln(Wst), 1950-2004 

Ages 26-29 0.1395 0.2119 0.1021 0.1713 
 Ages 30-39 0.0790 0.6866 -0.0085 0.1428 
 Ages 40-49 0.0489 0.9360 -0.0356 0.0911 
 Ages 50-60 0.0377 1.0539 -0.0332 0.0957 

Ages 61-65 0.0269 1.8211 -0.0504 0.0850 

Earnings data, ∆ ln(Wst), ages 30-60 

Years 1950-1959 0.0477 1.0425 -0.0525 0.1428 
Years 1960-1969 0.0420 0.5214 -0.0087 0.1022 
Years 1970-1979 0.0255 1.6440 -0.0524 0.1068 
Years 1980-1989 0.0148 2.1208 -0.0508 0.1081 
Years 1990-2004 0.0255 0.9647 -0.0365 0.1059 

Growth in BLS total factor productivity, ∆ ∗ ln(T t ) 

Years 1950-1959 0.0252 1.2440 -0.0182 0.0809 
Years 1960-1969 0.0252 0.8177 -0.0107 0.0491 
Years 1970-1979 0.0145 2.0451 -0.0459 0.0502 
Years 1980-1989 0.0036 7.9824 -0.0495 0.0487 
Years 1990-2004 0.0154 0.8812 -0.0130 0.0334 

�Principal Components Estimate of TFP Growth, xt 
(Principal Components Vector for Data Sample with Ages 30-60) 

Years 1950-1959 0.0357 1.4548 -0.0490 0.0874 
Years 1960-1969 0.0297 0.6288 0.0005 0.0558 
Years 1970-1979 0.0117 3.7706 -0.0525 0.0597 
Years 1980-1989 -0.0012 -24.7888 -0.0515 0.0505 
Years 19  90-2004 0.0104 1.7403 -0.0312 0.0381 



Table 2. Age-experience Profile of Earnings Growth 

Current Age 

  Sample Age Range for Regression:

30-60 26-60 26-65 

βs Cum. Total βs Cum. Total βs Cum. Total 
26 NA NA 0.0821 0.0821 0.0821 0.0821 
27 NA NA 0.0716 0.1537 0.0716 0.1537 
28 NA NA 0.0617 0.2154 0.0617 0.2154 
29 NA NA 0.0552 0.2706 0.0552 0.2706 
30 0.0481 0.0481 0.0481 0.3187 0.0481 0.3187 
31 0.0430 0.0912 0.0430 0.3617 0.0430 0.3617 
32 0.0396 0.1307 0.0396 0.4013 0.0396 0.4013 
33 0.0365 0.1672 0.0365 0.4378 0.0365 0.4378 
34 0.0325 0.1996 0.0325 0.4702 0.0325 0.4702 
35 0.0287 0.2283 0.0287 0.4989 0.0287 0.4989 
36 0.0269 0.2552 0.0269 0.5258 0.0269 0.5258 
37 0.0253 0.2805 0.0253 0.5511 0.0253 0.5511 
38 0.0228 0.3033 0.0228 0.5738 0.0228 0.5738 
39 0.0221 0.3253 0.0221 0.5959 0.0221 0.5959 
40 0.0190 0.3443 0.0190 0.6149 0.0190 0.6149 
41 0.0172 0.3615 0.0172 0.6321 0.0172 0.6321 
42 0.0144 0.3759 0.0144 0.6465 0.0144 0.6465 
43 0.0134 0.3894 0.0134 0.6600 0.0134 0.6600 
44 0.0118 0.4012 0.0118 0.6717 0.0118 0.6717 
45 0.0111 0.4123 0.0111 0.6828 0.0111 0.6828 
46 0.0084 0.4207 0.0084 0.6912 0.0084 0.6912 
47 0.0078 0.4285 0.0078 0.6990 0.0078 0.6990 
48 0.0062 0.4347 0.0062 0.7052 0.0062 0.7052 
49 0.0046 0.4393 0.0046 0.7098 0.0046 0.7098 
50 0.0063 0.4455 0.0063 0.7161 0.0063 0.7161 
51 0.0024 0.4479 0.0024 0.7185 0.0024 0.7185 
52 0.0019 0.4497 0.0019 0.7203 0.0019 0.7203 
53 0.0016 0.4513 0.0016 0.7219 0.0016 0.7219 
54 0.0005 0.4518 0.0005 0.7224 0.0005 0.7224 
55 -0.0017 0.4501 -0.0017 0.7207 -0.0017 0.7207 
56 -0.0032 0.4469 -0.0032 0.7174 -0.0032 0.7174 
57 -0.0027 0.4442 -0.0027 0.7148 -0.0027 0.7148 
58 -0.0048 0.4394 -0.0048 0.7100 -0.0048 0.7100 
59 -0.0043 0.4351 -0.0043 0.7057 -0.0043 0.7057 
60 -0.0054 0.4297 -0.0054 0.7003 -0.0054 0.7003 
61 NA NA NA NA -0.0079 0.6924 
62 NA NA NA NA -0.0078 0.6846 
63 NA NA NA NA -0.0154 0.6692 
64 NA NA NA NA -0.0130 0.6562 
65 NA NA NA NA -0.0247 0.6315 



θS(s−1) + θS(s) + θS(s+1) 
θS(s) ≡ . 

3 

∆∗ ln(Ws−1,t) +  ∆∗ ln(Wst) +  ∆∗ ln(Ws+1,t) 6s−1,t + 6st + 6s+1,t 
= θS(s) · ∆ ∗ ln(T ∗ ) +  . 

3 t 3 
(21) 

J3 θS o1−α1 Tt−S+1 θ1 Tt 
1−α 1−α 1−αYt = [Kt]

α · ξi · His · [Ts−S ] · [ ] · ... · [ ] , 
i 

Ts S Tt 1 − −

We smooth our estimates using 3-year moving averages. Let14 

From (20), 

This is the equation that we estimate below. 
Table 3 presents results. For each age s, we estimate (21) for all t. In other words, the 

estimating equations are separate each s. We use Discoll-Kraay [1998] standard errors.15 

The first two age-range samples yield the same outcome: θS falls 5-10% with age – 
but the changes are not statistically significant with 95% confidence intervals. Extending 
the age range to 65 leads to outcomes for ages 64-65 with no age-dependent change in θS . 
However, we suspect there may be a selection problem for workers in their mid-60s: those 
remaining in the labor force may be exceptional. Overall, we conclude that θS declines 
with S, but that the magnitude of the decline is modest. 

Formulation II. Formulation II provides an alternative measure of TFP growth. 
Suppose, for example, that θ1 > θ60.  Then the  BLS measure  of  TFP growth is  

misspecified: the BLS constructs LQ 
– recall (5) – from numbers of workers of different t 

ages and their relative wages at the given time t. But  if  θ1 > θ60, relative wages at t 
depend upon current and past TFP growth. We cannot rely upon an aggregated labor 
figure. Our model implies 

where we sum  over  all workers  i in the labor force at t, s = s(i), and S = S(s(i)). Put 
another way, the effect of TFP growth on production depends upon the age distribution 
in a way that Solow’s [1957] analysis of TFP does not encompass. 

Formulation II proceeds as follows. We treat the true ∆∗ ln(T ∗) as a latent variable, t 

xt  ∆ ∗ ln(T ∗ ) .t ≡
For a given s, think of (20) as implying moment conditions 

∆ ∗ ln(Wst) − θS(s) · xt = 0 all t = 1950, ..., 2004 . (22) 

14 At the lower endpoint, where S = 1,  we  use  (2  · θ1 + θ2)/3, and similiarly at the upper 
endpoint. 
15 See, in particular, the covariance matrix estimate corrected for heteroscedasticity and 
autocorrelation in Gallant [1987, ch.6, sect.3]. 
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Table 3. Estimates of θs from Eq. (21), Using BLS TFP Data 

Current Age 

Sample Age Range for Regression:

30-60 26-60 26-65 

θs 95% Conf. Int. θs 95% Conf. Int. θs 95% Conf. Int. 
26 NA NA 1.0171 (0.7784,1.2558) 1.0171 (0.7784,1.2558) 
27 NA NA 1.0219 (0.7899,1.2540) 1.0219 (0.7899,1.2540) 
28 NA NA 1.0152 (0.7921,1.2383) 1.0152 (0.7921,1.2383) 
29 NA NA 1.0303 (0.8199,1.2407) 1.0303 (0.8199,1.2407) 
30 1.0329 (0.8250,1.2407) 1.0290 (0.8197,1.2383) 1.0290 (0.8197,1.2383) 
31 1.0266 (0.8250,1.2282) 1.0266 (0.8250,1.2282) 1.0266 (0.8250,1.2282) 
32 1.0176 (0.8140,1.2212) 1.0176 (0.8140,1.2212) 1.0176 (0.8140,1.2212) 
33 1.0135 (0.8118,1.2151) 1.0135 (0.8118,1.2151) 1.0135 (0.8118,1.2151) 
34 1.0246 (0.8216,1.2275) 1.0246 (0.8216,1.2275) 1.0246 (0.8216,1.2275) 
35 1.0220 (0.8132,1.2307) 1.0220 (0.8132,1.2307) 1.0220 (0.8132,1.2307) 
36 1.0100 (0.8051,1.2148) 1.0100 (0.8051,1.2148) 1.0100 (0.8051,1.2148) 
37 0.9929 (0.7893,1.1965) 0.9929 (0.7893,1.1965) 0.9929 (0.7893,1.1965) 
38 0.9954 (0.7902,1.2007) 0.9954 (0.7902,1.2007) 0.9954 (0.7902,1.2007) 
39 0.9742 (0.7601,1.1884) 0.9742 (0.7601,1.1884) 0.9742 (0.7601,1.1884) 
40 0.9998 (0.7894,1.2102) 0.9998 (0.7894,1.2102) 0.9998 (0.7894,1.2102) 
41 1.0131 (0.8102,1.2160) 1.0131 (0.8102,1.2160) 1.0131 (0.8102,1.2160) 
42 1.0673 (0.8650,1.2696) 1.0673 (0.8650,1.2696) 1.0673 (0.8650,1.2696) 
43 1.0468 (0.8461,1.2475) 1.0468 (0.8461,1.2475) 1.0468 (0.8461,1.2475) 
44 1.0508 (0.8428,1.2588) 1.0508 (0.8428,1.2588) 1.0508 (0.8428,1.2588) 
45 1.0182 (0.8148,1.2215) 1.0182 (0.8148,1.2215) 1.0182 (0.8148,1.2215) 
46 1.0214 (0.8214,1.2213) 1.0214 (0.8214,1.2213) 1.0214 (0.8214,1.2213) 
47 1.0103 (0.8128,1.2077) 1.0103 (0.8128,1.2077) 1.0103 (0.8128,1.2077) 
48 1.0227 (0.8179,1.2276) 1.0227 (0.8179,1.2276) 1.0227 (0.8179,1.2276) 
49 0.9954 (0.7926,1.1982) 0.9954 (0.7926,1.1982) 0.9954 (0.7926,1.1982) 
50 0.9893 (0.7827,1.1959) 0.9893 (0.7827,1.1959) 0.9893 (0.7827,1.1959) 
51 0.9607 (0.7486,1.1729) 0.9607 (0.7486,1.1729) 0.9607 (0.7486,1.1729) 
52 0.9815 (0.7687,1.1943) 0.9815 (0.7687,1.1943) 0.9815 (0.7687,1.1943) 
53 0.9716 (0.7574,1.1858) 0.9716 (0.7574,1.1858) 0.9716 (0.7574,1.1858) 
54 1.0002 (0.7914,1.2090) 1.0002 (0.7914,1.2090) 1.0002 (0.7914,1.2090) 
55 1.0053 (0.7788,1.2318) 1.0053 (0.7788,1.2318) 1.0053 (0.7788,1.2318) 
56 0.9980 (0.7807,1.2153) 0.9980 (0.7807,1.2153) 0.9980 (0.7807,1.2153) 
57 0.9977 (0.7867,1.2086) 0.9977 (0.7867,1.2086) 0.9977 (0.7867,1.2086) 
58 0.9839 (0.7772,1.1905) 0.9839 (0.7772,1.1905) 0.9839 (0.7772,1.1905) 
59 0.9785 (0.7705,1.1865) 0.9785 (0.7705,1.1865) 0.9785 (0.7705,1.1865) 
60 0.9441 (0.7384,1.1498) 0.9441 (0.7384,1.1498) 0.9532 (0.7558,1.1505) 
61 NA NA NA NA 0.9321 (0.7200,1.1441) 
62 NA NA NA NA 0.9276 (0.7077,1.1475) 
63 NA NA NA NA 0.9221 (0.6815,1.1627) 
64 NA NA NA NA 0.9658 (0.6984,1.2333) 
65 NA NA NA NA 1.0051 (0.6943,1.3158) 

     



Yst = θS(s)  x�t + 6st all t = 1950 , ... ,  2004 . (26) ·
Letting the OLS estimate of θS be θ�√S , and letting �6st be the regression residual, a consistent 
estimate of the stardard error for #t · (θ�S − θS ) is

18 

x�Ix� x�I�6�6Ix� x�Ix�
]−1 ]−1[ · [ ] · [ . (27)

#t #t #t

IcI IθI = [x�I x�]−1 x�IY = [c IY IY c]−1 c IY IY = [c · λ · c]−1λ · c = .Ic c 
I IThe standard normalization is c c = 1, yielding θI = c . As above, we renormalize c, and  

x�, so that  θ1 = 1.  
18 See Bai and Ng [2006]. 

Using each s in turn, and imposing θ1 = 1, (22) can yield consistent estimates of θS all 
S >  1 and  xt all t. After all, each ∆∗ ln(Wst) averages wage growth over a very large 
cross-section of workers. 

Suppose that we extract  the  first principal component from 

Y Y , (23)

Y  [Yst] = [∆ ∗ ln(Wst)] all s ,  t .  

I   

≡
If λ is the largest eigenvalue of Y IY and c the corresponding eigenvector, the first principal 
component is x� with16 

Y c = � (24)x ,  

Y IY c = λ · c .  (25) 

We can arrange the normalizations such that the first element of c is 1. The derivation of 
c and x� mimics a method of moments estimation based upon (22) and cross-sectional data 
– using the identity matrix as the weighting matrix. So, we can think of our principal 
components estimates c and x� as consistent estimates of θ and x. 

A second interpretation of c is as follows. Each element cS corresponds to the OLS 
estimate of θS from regression17 

We estimate the middle term with our Driscoll-Kraay procedure from Formulation I. 
Table 4 presents outcomes. The new regression delivers smaller standard errors. As 

stated, we normalize the principal components vector such that θ1 = 1.  Our  first two 
samples, ages 30-60 and 25-60, yield declines in θS with age in the range of 10-15%. In 
contrast to Table 3, the declines are statistically significant. The sample for ages 25-65 
shows a (slight) rebound in θS at ages above 62 – presumably due to selection, as before. 

16 See, for example, Greene [1993, p.271]. 
17 See Greene [1993] again. Note that (24)-(25) imply 
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Table 4. Estimates of θs from Eq. (26), Using Principal Components TFP Data 

Current Age 

Sample Age Range for Regression: 

30-60 26-60 26-65 

θs 95% Conf. Int. θs 95% Conf. Int. θs 95% Conf. Int. 
26 NA NA 0.9943 (0.9268,1.0618) 0.9949 (0.9183,1.0714) 
27 NA NA 0.9937 (0.9371,1.0503) 0.9952 (0.9295,1.0608) 
28 NA NA 0.9839 (0.9309,1.0369) 0.9864 (0.9249,1.0480) 
29 NA NA 0.9803 (0.9334,1.0272) 0.9833 (0.9307,1.0360) 
30 1.0075 (0.9558,1.0592) 0.9785 (0.9362,1.0209) 0.9821 (0.9342,1.0300) 
31 1.0026 (0.9615,1.0437) 0.9739 (0.9385,1.0093) 0.9775 (0.9346,1.0203) 
32 0.9931 (0.9529,1.0332) 0.9641 (0.9290,0.9991) 0.9680 (0.9249,1.0111) 
33 0.9871 (0.9423,1.0318) 0.9575 (0.9182,0.9968) 0.9616 (0.9128,1.0103) 
34 0.9952 (0.9585,1.0319) 0.9648 (0.9330,0.9966) 0.9693 (0.9291,1.0095) 
35 1.0027 (0.9663,1.0391) 0.9713 (0.9390,1.0036) 0.9763 (0.9361,1.0165) 
36 0.9845 (0.9588,1.0102) 0.9530 (0.9305,0.9756) 0.9585 (0.9293,0.9878) 
37 0.9755 (0.9504,1.0007) 0.9439 (0.9226,0.9653) 0.9503 (0.9215,0.9791) 
38 0.9777 (0.9480,1.0074) 0.9456 (0.9182,0.9730) 0.9526 (0.9203,0.9849) 
39 0.9688 (0.9205,1.0170) 0.9373 (0.8924,0.9822) 0.9446 (0.8935,0.9957) 
40 0.9743 (0.9457,1.0029) 0.9420 (0.9144,0.9695) 0.9495 (0.9167,0.9823) 
41 0.9671 (0.9431,0.9910) 0.9352 (0.9135,0.9568) 0.9428 (0.9141,0.9715) 
42 0.9952 (0.9720,1.0184) 0.9617 (0.9371,0.9864) 0.9703 (0.9477,0.9930) 
43 0.9762 (0.9510,1.0014) 0.9437 (0.9189,0.9685) 0.9519 (0.9253,0.9785) 
44 0.9853 (0.9612,1.0094) 0.9519 (0.9255,0.9784) 0.9608 (0.9368,0.9847) 
45 0.9540 (0.9208,0.9871) 0.9216 (0.8884,0.9547) 0.9297 (0.8948,0.9645) 
46 0.9553 (0.9337,0.9768) 0.9228 (0.9005,0.9451) 0.9314 (0.9085,0.9542) 
47 0.9412 (0.9106,0.9719) 0.9094 (0.8793,0.9395) 0.9183 (0.8875,0.9491) 
48 0.9562 (0.9201,0.9922) 0.9239 (0.8882,0.9597) 0.9335 (0.8997,0.9673) 
49 0.9333 (0.8929,0.9738) 0.9015 (0.8610,0.9420) 0.9108 (0.8713,0.9503) 
50 0.9287 (0.8942,0.9631) 0.8963 (0.8615,0.9311) 0.9055 (0.8700,0.9411) 
51 0.9063 (0.8607,0.9519) 0.8742 (0.8289,0.9195) 0.8835 (0.8357,0.9313) 
52 0.9349 (0.8963,0.9735) 0.9012 (0.8613,0.9411) 0.9118 (0.8715,0.9522) 
53 0.9333 (0.8926,0.9740) 0.9000 (0.8573,0.9427) 0.9108 (0.8700,0.9517) 
54 0.9492 (0.9153,0.9831) 0.9157 (0.8779,0.9534) 0.9274 (0.8978,0.9569) 
55 0.9290 (0.8622,0.9957) 0.8961 (0.8293,0.9630) 0.9076 (0.8447,0.9705) 
56 0.9174 (0.8488,0.9860) 0.8847 (0.8163,0.9530) 0.8969 (0.8323,0.9614) 
57 0.9218 (0.8708,0.9728) 0.8881 (0.8352,0.9409) 0.9006 (0.8533,0.9479) 
58 0.9278 (0.8884,0.9671) 0.8939 (0.8515,0.9364) 0.9073 (0.8726,0.9420) 
59 0.9178 (0.8814,0.9541) 0.8844 (0.8447,0.9241) 0.8980 (0.8663,0.9296) 
60 0.8940 (0.8602,0.9278) 0.8620 (0.8255,0.8984) 0.8694 (0.8373,0.9016) 
61 NA NA NA NA 0.8679 (0.8276,0.9083) 
62 NA NA NA NA 0.8733 (0.8104,0.9362) 
63 NA NA NA NA 0.8789 (0.7953,0.9624) 
64 NA NA NA NA 0.8976 (0.7844,1.0108) 
65 NA NA NA NA 0.9220 (0.7792,1.0649) 



1 

 [Tt] 1−α i

1 
�S 

(θx−1) E 
x=1wSt = [Tt] 1−α · HS · [1 + g] · w . (28)t 

SwSt HS 
�

(θx−1) 
x=1= · [1 + g] . 

w0t H0 

The declines in θS that we see are gradual. By age 45, about half of the eventual total 
drop has taken place. Thus, we do not see evidence that workers abruptly cease to invest 
in knowledge as they approach retirement. Total declines are rather modest in all cases – 
though they now seem to fall in the range of 10-15%. 

The principal components vectors are themselves interesting. By comparing λ with 
all other eigenvalues, we can compute the fraction of variance in the Y IY matrix explained 
by the first principal component. For our 3 age ranges, the percentages are 96%, 96%, and 
93%, respectively. We can derive the correlation coefficient for the principal components 
vector and the BLS vector ∆ ln(T ∗). The correlation coefficients are 0.7643, 0.7599, and t 
0.7613, respectively. The bottom panels of Table 1 present comparisons between the prin-
cipal components vector for our age sample 30-60 and the BLS vector. We can see that 
the principal components analysis finds a faster rate of technological progress in the 1960s, 
and an appreciably faster rate in the 1950s, but it shows a modestly slower rate 1970-2004. 

We view the high correlations in the preceding paragraph as confirmation of 
Solow’s [1956,1957] approach. Solow assumes an aggregate production function and uses 
it to derive measures of TFP. Given his specification, the envelope theorem and the pro-
duction function provide an avenue for deriving a second measure of TFP, which should 
correspond to the first. The high correlations that we find between x�t and ∆ ln(T ∗) show  t 
that there is indeed a strong correspondence. 

On the other hand, the correlations are not 100%, and we think that the principal 
components approach has advantages. In particular, the principal components approach 
avoids misspecifications that may result from imposing θS = 1 all S; it  makes  use  of  
averages of large numbers of observations, yielding consistent estimates of yearly changes; 
and, it uses differenced observations from panel data. The last eliminates personal fixed 
effects stemming, for example, from inherent ability and education – which the BLS 
approach, based on cross-sectional data, may confound. 

6 Interpretation of Results. Our estimates lead to a decomposition of the effective 
labor supply that can conveniently illustrate the effect of θ < 1 on aggregate earnings and 
also quantify the aggregate effects of an aging labor force. 

Consider the interpretation of our empirical results in the context of a theoretical 
framework (5)-(7). Suppose that the TFP term n (5) grows at a constant rate g 
equal to the average growth rate of aggregate earnings. Disregard worker-specific ability ξi 
because we will average over many i. Equation (7) shows that the wage wSt for a worker 
with labor market experience S at time t is 

Accordingly, the current earnings of a worker with experience S relative  to a new  entrant  
to the labor force are 

Section 5 provides estimates of HS/H0 (see Table 2) and the vector of θx (Tables 3 
and 4). The value of g = 0.0167 can be taken from BLS data on TFP growth. 
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x wxt · Nx 
� 

(θz −1)Et = = [Tt] 1−α · Hx · Nx · [1 + g] z=1 .
Ew
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� x 
(θz −1) 

z=11 D� 
Hx · Nx · [1 + g] i D� 

Hx · Nx i 3 
x xEt = [Tt] 1−α · � · � · Nx . 

Hx · Nx Nxx x x 

x� (θz −1) 
z=1Hx · Nx · [1 + g]x a ≡ � , (30)

Hx  Nxx 

� 
Hx · Nxxh ≡ � ,
Nx

Age-earnings Profile. Figure 1 illustrates the quantitative impact of our estimates of θ 
on the age-earnings profile. The figure isolates the effect of θ on earnings by comparing 
two cross-sectional age-earnings profiles, wSt/w0t: the (counterfactual) upper profile cor-
responds to the case θx = 1, where workers of all ages receive the full earnings increment 
that results from TFP growth. The lower profile corresponds to actual estimates of θx 

from Table 4, column 5. The difference between the two profiles is earnings forgone due  to  
incomplete absorption of technological progress by older workers. By age 65, an average 
worker will have lost about 2.6 years’ worth of TFP-induced wage growth, which reduces 
his earnings by about 5 percent. 

Labor Supply Decomposition. Consider the effect of θ on aggregate earnings. 
Using (28) and letting 

Nx = N0  e −nx (29) ·
be the size of a cohort with experience x, the aggregate effective labor supply is �
The right hand side of the above expression can be decomposed: 

1 
The first term, [Tt] 1−α , captures labor augmenting technological change. The second term, � 

·
is the age factor that reduces effective labor supply due to incomplete absorption of tech-
nological change by older workers. The value of a is generally less than 1, with a = 1  
when all θx = 1.  Put  differently, 1 − a is  the fraction of aggregate earnings forgone due to 
incomplete absorption of technological progress.  

The third term, 

x 

is the experience factor, equal to average experiential human capital per worker. 
Set the labor force growth rate n = 0.01; g = 0.0167; use HS from Table 2, column 

7; and, use θx from Table 4, column 5. Then a = 0.984, meaning that the aggregate labor 
supply is 1.6 percent less than it would have been if θ were 1. 
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Figure 1. Age-earnings profile in a cross-section, 0. 



∂a 
> 0 . 

∂n 

∂h 
< 0 . 

∂n 

Aging and Effective Labor Supply. To understand the effect of an aging labor force on 
the effective labor supply Et, consider the dependence of the age factor a and the experience 
factor h on the labor force growth rate n. Suppose the underlying cause of an aging labor 
force is a reduction in population growth rate,  n. Smaller population growth will shift the 
weights in (30) toward older cohorts, whose earnings are most affected by θ, and this will 
reduce a: 

Figure 2 (top panel) illustrates the relationship for n ∈ [−0.01 , 0.01]. The effect of 
n on the experience factor h is ambiguous and depends on the shape of the experience-
earnings profile HS . If  HS peaks at a relatively late age, a reduction in n increases the 
weight of high-experience, high-earning workers, which increases h. If  HS peaks early, 
older workers may have lower than average earnings, and then aging would decrease h. In  
practice, older workers have higher than average earnings (see Figure 1), making h depend 
negatively on n (see Figure 2, middle panel): 

The total effect of aging on labor supply is a combination of the opposing effects 
on a and h. In the end, the experience effect dominates, so that aging increases the 
effective labor supply – changing the labor force composition towards workers with more 
experiential human capital (Figure 2, bottom panel). The total effect of aging is relatively 
modest, however: if we reduce n from 0.01 to 0, the resulting increase in effective labor 
supply is about 1.4 percent.  

7 Conclusions. We present an earnings dynamics model that allows technological 
progress to affect workers’ marginal products, hence, their earnings, differentially at dif-
ferent ages. In one specification, we use a standard BLS measure of TFP growth as a 
regressor. In another, we derive a stand-in for aggregate TFP growth using principal 
components analysis. 

We have access to a large panel of administrative data from the Social Security system. 
The data allow analysis for 1950-2004. 

With BLS TFP data as a regressor, a 25-30 year old worker’s earnings follow TFP 
growth 1-for-1, but a 60 year old worker’s earnings climb, annually, only 90-95% as fast as 
TFP. 

Our principal components approach – which essentially treats TFP as a latent vari-
able – yields generally tighter standard errors. The measured declining-with-age ability 
to benefit from TFP growth is also somewhat more severe – registering a drop of 10-15% 
by age 60. 

In all cases, however, simulated aging of the labor force through slower population 
growth yields (modest) net gains in aggregative labor efficiency: the growth in earnings 
from accumulating experience more than compensates for declines in ability to benefit from  
improvements in technology. 

Our analysis examines one aspect of how a worker’s marginal productivity is likely 
to fare as the individual ages. We do not study participation rates – though we note 
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Figure 2. The dependence of age and experience factors on the labor force growth rate. 
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that lost earnings due to declines in θx may lower remuneration around the average age of 
retirement by about 5%. Increases in longevity presumably encourage workers to consider 
longer careers, but declines in θx will be one adverse factor – and this factor will become 
more important during eras of rapid technological change. 
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