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Medicaid Insurance in Old Age 

Abstract 

Medicaid was primarily designed to protect and insure the poor. However, the poor tend to live 
much shorter lifespans and thus incur much lower medical expenses before death. In this paper 
we assess the insurance and redistributive properties of Medicaid, taking these dimensions of 
heterogeneity into account, for single retirees. 
The Medicaid recipiency rate for those at the bottom income quintile stays around 60%-70% 
throughout their retirement. In contrast, Medicaid recipiency by higher-income retirees is much 
lower but increases by age, especially after age 90. 
Our preliminary results show that the annuity value of Medicaid payments is a hump-shaped 
function of permanent income. People in the middle of the income distribution receive more than 
those at the top or the bottom. Once one takes into account that the rich live longer, Medicaid is 
even less redistribu- tive: in terms of present discounted value, the richest people receive almost 
as much the poorest ones, and the middle income people still benefit the most. 
Accounting for risk makes Medicaid less redistributive further still. Compensating differential 
calculations show that Medicaid insurance is valued most highly by the most rich, who have the 
most to lose. 
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1 Introduction

In the United States, a key public health insurance program for the elderly poor
is Medicaid, a means-tested program that covers any medical expenses not picked
up by other insurance programs. While Medicaid is often perceived as supporting
only the lifetime poor, a significant portion of Medicaid spending for the elderly aids
middle income people who have been wiped out financially by expensive medical
conditions. While poor people tend to live shorter lives and to die before incurring
large medical expenses, richer people are more likely to live long and face expensive
medical conditions, such as nursing home stays, when very old. For example, extended
stays in a nursing home are generally not covered by other public or private insurance,
even though nursing home care costs $60,000 to $75,000 a year (in 2005). Medicaid
ends up financing 70% of nursing home residents (Kaiser Foundation [34]).

In this paper we analyze the insurance and redistributive properties of Medicaid
during old age. Using the Asset and Health Dynamics of the Oldest Old (AHEAD)
dataset, we find that the average Medicaid recipiency rate for old people in the bottom
quintile of the permanent income distribution is just under 70% and stays more or
less constant throughout retirement. Medicaid recipiency by higher-income retirees
is significantly lower, but increases with age. Most notably, this increase tends to
happen at more advanced ages for people in the highest permanent income quintiles,
reflecting the fact that survivors with higher lifetime resources run out of savings (and
thus qualify for Medicaid) later on in life.

To understand these mechanisms, we construct and estimate a life-cycle model of
consumption and endogenous medical expenditure that accounts for Medicare, Sup-
plemental Social Insurance (SSI) and Medicaid. Agents in the model face uncertainty
about their health, lifespan, and medical needs (including nursing home stays). This
uncertainty is partially offset by the insurance provided by the government and pri-
vate institutions. Agents choose whether they want to apply for Medicaid if they are
eligible, how much to save, and how to split their consumption between medical and
non-medical goods.1 We model two pathways to Medicaid, and allow the pathways
to differ in generosity.

To appropriately evaluate redistribution, we allow for heterogeneity in wealth,
permanent income (PI) , health, gender, life expectancy, and medical needs. We also
require our model to fit well across the entire income distribution, rather than simply
explain mean or median behavior. Our model closely matches the life-cycle profiles
of assets, out-of-pocket medical spending, and Medicaid recipiency rates for elderly
singles in different cohorts and permanent income groups.

1Three recent papers contain life-cycle models where the choice of medical expenditures also
affects health outcomes. In addition to having different emphases, these papers model Medicaid in
ways different from ours. Feng [13] models Medicaid as an insurance policy with no premiums and
extremely low—possibly zero—co-payment rates. Fonseca et al. [17] assume that the consumption
floor is invariant to medical needs (private conversation with Pierre-Carl Michaud). Ozkan [35]
assumes that indigent individuals receive curative, but not preventative, care.
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We use our estimated model to compute how Medicaid payments by vary by age,
gender, permanent income, and health status. We find that the current Medicaid
system provides different kinds of insurance to households with different resources.
Households in the lower permanent income quintiles are much more likely to receive
Medicaid transfers, but the transfers that they receive are on average relatively small.
Households in the higher permanent income quintiles are much less likely to receive
any Medicaid pay-outs, but when they do, these pay-outs are very big and correspond
to severe and expensive medical conditions. Therefore, Medicaid is an effective insur-
ance device for the poorest, but also offers valuable insurance to the rich by insuring
them against catastrophic medical conditions.

We also compute the value of Medicaid insurance in old age. Although there is
a large literature on the health effects of public insurance programs, and a smaller
literature on the private markets that public insurance displaces, little is known about
the insurance properties of public insurance.

Summing over agents’ lives, our preliminary results show that at age 74 the ex-
pected annuity value of Medicaid payments is a hump-shaped function of permanent
income. People in the middle of the income distribution receive more than those
at the top or the bottom. Once one takes into account that the rich live longer,
Medicaid is even less redistributive: in terms of present discounted value, the richest
people receive almost as much the poorest ones, and the middle income people still
benefit the most. Accounting for risk makes Medicaid less redistributive further still.
Compensating differential calculations show that Medicaid insurance is valued most
highly by the most rich, who have the most to lose.

2 Brief literature review

This paper is related to several previous papers on savings, health risks, and social
insurance. Hurd [22] and Hurd, McFadden, Merrill [23] highlight the importance of
accounting for the link between wealth and mortality risk when estimating life-cycle
models. Kotlikoff [28] stresses the importance of modeling health expenditures to
understand precautionary savings.

Hubbard et al. [20] and Palumbo [37] solve dynamic programming models of sav-
ings with medical expense risk and find that medical expenses have relatively small
effects. The key reason why these papers underestimate medical spending risk is that
the data sets available at that time had poor measures of medical spending and, in
particular, were missing late-in-life medical spending and had poor measures of nurs-
ing home costs. As a result, they underestimate the extent to which medical expenses
rise with age and income.

Hubbard et al. [21] and Scholz et al. [42] argue that means-tested social insurance
programs (in the form of a minimum consumption floor) provide strong incentives for
low-income individuals not to save. Kopecky and Koreshkova [27] find that old-age
medical expenses, and the coverage of these expenses provided by Medicaid, have
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large effects on aggregate capital accumulation. Brown and Finkelstein [5] develop
a dynamic model of optimal savings and long-term care purchase decisions. They
conclude that Medicaid could explain the lack of private long-term care insurance for
about two-thirds of the wealth distribution. Consistent with this evidence, Brown et
al. [6] exploit cross-state variation in Medicaid rules and also find significant crowding
out.

Marshall, McGarry, and Skinner [30] consider whether out-of-pocket medical ex-
penditures are a risk to financial security, particularly at older ages, by studying
health care spending near the end of life. They conclude that such expenses are
large and represent a substantial fraction of liquid wealth for decedents. Poterba,
Venti, and Wise [39] document important correlations between poor health and asset
accumulation.

Koijen, Van Nieuwerburgh, and Yogo [25] develop risk measures for health and
longevity insurance and compare the risk exposure of each household in the Health
and Retirement Study with the model predicted optimal risk exposure.

This paper also contributes to the literature on the redistribution generated by
various government programs. Although there is a lot of research about the amount
of redistribution provided by Social Security and a smaller amount of research about
Medicare, to the best of our knowledge this is the first paper to examine the amount of
transfers provided to different income groups by Medicaid in old age. Furthermore, we
are the first to assess individuals’ valuation of the insurance provided by Medicaid.2

3 Institutional background and data highlights

3.1 Institutional background

In the United States, there are two major public insurance programs helping the
elderly with their medical expenses. The first is Medicare, a federal program that
provides health insurance to almost every person over the age of 65. The second
is Medicaid, a means-tested program that is run jointly by the federal and state
governments.

An important characteristic of Medicaid is that it is the payer of “last resort”:
Medicaid contributes only after Medicare and private insurance pay their share, and
the individual spends down his assets to a “disregard” amount. Because Medicaid re-
stricts benefits to those with assets below the disregard, it discourages saving through
an additional channel not present in non-means-tested insurance, which reduces sav-
ings only by reducing risks. One area where Medicaid is particularly important is
long-term care. Medicare reimburses only a limited amount of long-term care costs,

2Unlike Social Security, unemployment benefits, and disability insurance, Medicaid is not fi-
nanced using a specific tax, but by general government revenue, making it difficult to determine
how redistributive “Medicaid taxes” are. For this reason, we focus on the redistribution generated
by Medicaid benefits.
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and most elderly people do not have private long-term care insurance. As a result,
Medicaid covers almost all nursing home costs of poor old recipients; in fact, Medicaid
now assists 70 percent of nursing home residents.3

Medicaid-eligible individuals can be divided into two main groups. The first group
comprises the categorically needy, whose income and assets fall below certain thresh-
olds. People who receive SSI typically qualify under the categorically needy provision.
The second group comprises the medically needy, who are individuals whose income is
not particularly low, but who face such high medical expenditures that their resources
become small in comparison.

The categorically needy provision thus affects the saving of people who have been
poor throughout most of their lives, but has no impact on the saving of middle- and
upper-income people. The medically needy provision, instead, provides insurance to
people with higher income and assets who are still at risk of being impoverished by
expensive medical conditions.

3.2 The AHEAD dataset

We use data from the Assets and Health Dynamics of the Oldest Old (AHEAD)
data set. The AHEAD is a survey of individuals who were non-institutionalized
and aged 70 or older in 1994. It is part of the Health and Retirement Survey (HRS)
conducted by the University of Michigan. We consider only single (i.e., never married,
divorced, or widowed) retired individuals. A total of 3,872 singles were interviewed
for the AHEAD survey in late 1993-early 1994, which we refer to as 1994. These
individuals were interviewed again in 1996, 1998, 2000, 2002, 2004, and 2006. This
leaves us with 3,259 individuals, of whom 592 are men and 2,667 are women. Of these
3,259 individuals, 884 are still alive in 2006. We do not use 1994 assets or medical
expenses. Assets in 1994 were underreported (Rohwedder et al. [41]) and medical
expenses appear to be underreported as well.

A key advantage of the AHEAD relative to other datasets is that it provides
panel data on health status, including nursing home stays. We assign individuals a
health status of “good” if self-reported health is excellent, very good or good and are
assigned a health status of “bad” if self-reported health is fair or poor. We assign
individuals to the nursing home state if they were in a nursing home at least 120 days
since the last interview or if they spent at least 60 days in a nursing home before the
next scheduled interview and died before that scheduled interview.

We break the data into 5 cohorts. The first cohort consists of individuals that
were ages 72-76 in 1996; the second cohort contains ages 77-81; the third ages 82-
86; the fourth ages 87-91; and the final cohort, for sample size reasons, contains
ages 92-102.4 We use data for 6 different years; 1996, 1998, 2000, 2002, 2004, and

3Statistics from the Kaiser Foundation [34].
4Even with the longer interval, the final cohort contains relatively few observations, yielding

short and erratic profiles. In the interest of clarity, we therefore exclude this cohort from our graphs,
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2006. We calculate summary statistics (e.g., medians), cohort-by-cohort, for surviving
individuals in each calendar year—we use an unbalanced panel. We then construct
life-cycle profiles by ordering the summary statistics by cohort and age at each year of
observation. Moving from the left-hand-side to the right-hand-side of our graphs, we
thus show data for four cohorts, with each cohort’s data starting out at the cohort’s
average age in 1996. Our graphs omit profiles for the oldest cohort because sample
size for this cohort is tiny.

Since we want to understand the role of income, we further stratify the data by
post-retirement permanent income (PI). Hence, for each cohort our graphs usually
display several horizontal lines showing, for example, average Medicaid status in each
PI group in each calendar year. These lines also identify the moment conditions we
use when estimating the model.

We measure post-retirement PI as the individual’s average non-asset income over
all periods during which he or she is observed. Non-asset income includes the value
of Social Security benefits, defined benefit pension benefits, veterans benefits and
annuities. Since we model social insurance explicitly, we do not include SSI transfers.
Because there is a roughly monotonic relationship between lifetime earnings and the
income variables that we use, our measure of post-retirement PI is also a good measure
of lifetime permanent income.

3.3 Medicaid Recipiency

Figure 1: Medicaid recipiency rates by age, cohort, and permanent income. Thicker lines
refer to higher PI groups.

AHEAD respondents are asked whether they are currently covered by Medicaid.
Figure 1 plots the fraction of the sample receiving Medicaid by age, birth cohort

although we use many of the observations when estimating the model.
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and income quintile for all the individuals alive at each moment in time. There are
four lines representing PI groupings within each cohort. We split the data into PI
quintiles, but then merge the top two quintiles together because at younger ages no
one in the top PI quintile is on Medicaid.

The members of the first cohort appear in our sample at an average age of 74 in
1996. We then observe them in 1998, when they are on average 76 years old, and
then again every two years until 2006. The other cohorts start from older initial ages
and are also followed for ten years. The graph reports the Medicaid recipiency rate
for each cohort and PI grouping for six data points over time.

Unsurprisingly, Medicaid usage is inversely related to permanent income: the top
line shows the fraction of Medicaid recipients in the bottom 20% of the permanent
income distribution, while the bottom line shows median assets in the top 40%. For
example, the top left line shows that for the bottom PI quintile of the cohort aged 74
in 1996, about 70% of the sample receives Medicaid in 1996; this fraction stays rather
stable over time. This suggests that the poorest people are qualifying for Medicaid
under the categorically needy provision, where eligibility depends on income and
assets, but not the amount of the medical expenses.

The Medicaid recipiency rate tends to rise with age most quickly for people in
the middle and highest PI groups. For example, Medicaid recipiency in the oldest
cohort and top two permanent income quintiles rises from about 4% at age 89 to over
20% at age 96. Even people with relatively large resources can be hit by medical
shocks severe enough to exhaust their assets and qualify them for Medicaid under the
medically needy provision.

3.4 Medical expense profiles

In all waves, AHEAD respondents are asked about what medical expenses they
paid out of pocket. Out-of-pocket medical expenses are the sum of what the indi-
vidual spends out of pocket on insurance premia, drug costs, and costs for hospital,
nursing home care, doctor visits, dental visits, and outpatient care. It includes med-
ical expenses during the last year of life. It does not include expenses covered by
insurance, either public or private.

French and Jones [18] show that the medical expense data in the AHEAD line
up with the aggregate statistics. For our sample, mean medical expenses are $3,712
with a standard deviation of $13,429 in 1998 dollars. Although this figure is large,
it is not surprising, because Medicare did not cover prescription drugs for most of
the sample period, requires co-pays for services, and caps the number of reimbursed
nursing home and hospital nights.

Figures 2 and 3 display the median and 90th percentile of the out-of-pocket medi-
cal expense distribution, respectively. The bottom two quintiles of permanent income
are merged as there is very little variation in out-of-pocket medical expenses in the
lowest quintile until very late in life: at younger ages, most of the expenses in the
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Figure 2: Median out-of-pocket medical expenditures by age, cohort, and permanent in-
come.

bottom quintile are bottom-coded at $250. The graphs highlight the large increase
in out-of-pocket medical expenses as people reach very advanced ages and show that
this increase is especially pronounced for people in the highest PI quintiles.

3.5 Net worth profiles

Our measure of net worth (or assets) is the sum of all assets less mortgages and
other debts. The AHEAD has information on the value of housing and real estate,
autos, liquid assets (which include money market accounts, savings accounts, T-bills,
etc.), IRAs, Keoghs, stocks, the value of a farm or business, mutual funds, bonds,
and “other” assets.

Figure 4 reports median assets by cohort, age, and PI quintile. However, the fifth,
bottom line is hard to distinguish from the horizontal axis because households in
this PI quintile hold few assets. Unsurprisingly, assets turn out to be monotonically
increasing in income, so that the bottom line shows median assets in the lowest PI
quintile, while the top line shows median assets in the top quintile. For example, the
top left line shows that for the top PI quintile of the cohort age 74 in 1996, median
assets started at $170,000 and then stayed rather stable over time: $150,000 at age
76, $160,000 at age 78, $180,000 at ages 80 and 82, and $190,000 at age 84.

For all PI quintiles in these cohorts, the assets of surviving individuals neither
rise rapidly nor decline rapidly with age. If anything, those with high income tend to
have their assets increase as they age, whereas those with low income tend to have
their assets decrease. The slow rate at which the elderly deplete their wealth has been
a long-standing puzzle (see for example, Mirer [31]). However, as De Nardi, French,
and Jones [11] show, the risk of medical spending rising with age and income goes a
long way toward explaining this puzzle.
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Figure 3: 90th percentile out-of-pocket medical expenditures by age, cohort, and perma-
nent income.

4 The model

We focus on single people, male or female, who have already retired. This allows us
to abstract from labor supply decisions and from complications arising from changes
in family size.

4.1 Preferences

Individuals in this model receive utility from the consumption of both non-medical
and medical goods. Each period, their flow utility is given by

u(ct, mt, µ(·)) =
1

1− ν
c1−ν
t + µ(ht, ζt, ξt, t)

1

1− ω
m1−ω

t , (1)

where t is age, ct is consumption of non-medical goods, mt is total consumption
of medical goods, and µ(·) is the medical needs shifter, which affects the marginal
utility of consuming medical goods and services. The consumption of both goods is
expressed in dollar values. The intertemporal elasticities for the two goods, 1/ν and
1/ω, can differ.

We assume that µ(·) shifts with medical needs, such as dementia, arthritis, or
a broken bone. These shocks affect the utility of consuming medical goods and
services, including nursing home care. Formally, we model µ(·) as a function of age,
the discrete-valued health status indicator ht, and the medical needs shocks ζt and
ξt. Individuals optimally choose how much to spend in response to these shocks.

A complementary approach is that of Grossman [19], in which medical expenses
represent investments in health capital, which in turn decreases mortality (e.g., Yogo [43])
or improves health. While a few studies find that medical expenditures have signif-
icant effects on health and/or survival (Card et al. [8]; Doyle [10], Finkelstein et
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Figure 4: Median assets by age, cohort, and permanent income. Thicker lines refer to
higher PI groups.

al. [15]), most others find small effects (Brook et al. [3]; Fisher et al. [16]; Finkelstein
and McKnight [14]; Khwaja [24]); see De Nardi et al. [11] for a discussion. These
findings suggest that the effects of medical expenditures on the health outcomes are,
at a minimum, extremely difficult to identify. Identification problems include reverse
causality (sick people have higher health expenditures) and lack of insurance variation
(most elderly individuals receive Medicare or Medicaid). Given that older people have
already shaped their health and lifestyle, we view our assumption that their health
and mortality depend on their lifetime earnings, but is exogenous to their current
decisions, to be a reasonable simplification.

4.2 Insurance Mechanisms

We model two important types of health insurance. The first one pays a pro-
portional share of total medical expenses and can be thought of as a combination
of Medicare and private insurance. Let q(ht) denote the individual’s co-insurance
(co-pay) rate, i.e., the share of medical expenses not paid by Medicare or private
insurance. We allow the co-pay rate to depend on whether a person is in a nursing
home (ht = 1) or not. Because nursing home stays are virtually uninsured by Medi-
care and private insurance, people residing in nursing homes face much higher co-pay
rates. However, co-pay rates do not vary much across other medical conditions.

The second type of health insurance that we model is Medicaid, which is means-
tested. To link Medicaid transfers to medical needs, µ(ht, ζt, ξt, t), we assume that
each period Medicaid guarantees a minimum level of flow utility u

¯i
, which differs

between categorically needy (i = c) and medically needy (i = m) recipients. More
precisely, once the Medicaid transfer is made, an individual with the state vector
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(ht, ζt, ξt, t) can afford a consumption-medical goods pair (ct, mt) such that

u
¯i

=
1

1− ν
c1−ν
t + µ(ht, ζt, ξt, t)

1

1− ω
m1−ω

t . (2)

To implement our utility floor, for every value of the state vector, we find the expen-
diture level x

¯i
= ct +mtq(ht) needed to achieve the utility level u

¯i
(equation (2)), as-

suming that individuals make intratemporally optimal decisions. This yields the min-
imum expenditure x

¯c
(·) or x

¯m
(·), which correspond to the categorically and medically

needy utility floors. The actual amount that Medicaid transfers, bc(at, yt, ht, ζt, ξt, t)
or bm(at, yt, ht, ζt, ξt, t), is then given by x

¯c
(·) or x

¯m
(·) less the individual’s total finan-

cial resources (assets, at, and non-asset income, yt).

4.3 Uncertainty and Non-Asset Income

The individual faces several sources of risk, which we treat as exogenous: health
status risk, survival risk, and medical needs risk. At the beginning of each period,
the individual’s health status, and medical needs shocks are realized and need-based
transfers are given. The individual then chooses consumption, medical expenditure,
and saves. Finally, the survival shock hits.

We parameterize the preference shifter for medical goods and services (the needs
shock) as

log(µ(·)) = α0 + α1t + α2t
2 + α3t

3 + α4ht + α5ht × t (3)

+σ(h, t)× ψt, (4)

σ(h, t)2 = β0 + β1t+ β2t
2 + β4ht + β5ht × t (5)

ψt = ζt + ξt, ξt ∼ N(0, σ2
ξ ), (6)

ζt = ρmζt−1 + ǫt, ǫt ∼ N(0, σ2
ǫ ), (7)

σ2
ξ +

σ2
ǫ

1− ρ2m
≡ 1, (8)

where ξt and ǫt are serially and mutually independent. We thus allow the need for
medical services to have temporary (ξt) and persistent (ζt) shocks. It is worth stressing
that we not allow any component of µ(·) to depend on permanent income; income
affects medical expenditures solely through the budget constraint.

Health status can take on three values: good (3), bad (2), and in a nursing
home (1). We allow the transition probabilities for health to depend on previous
health, sex (g), permanent income (I), and age. The elements of the health status
transition matrix are

πj,k,g,I,t = Pr(ht+1 = k|ht = j, g, I, t), j, k ∈ {1, 2, 3}. (9)

Mortality also depends on health, sex, permanent income and age. Let sg,h,I,t
denote the probability that an individual of sex g is alive at age t+1, conditional on
being alive at age t, having time-t health status h, and enjoying permanent income I.
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Non-asset income yt, is a deterministic function of sex, permanent income, and
age:

yt = y(g, I, t). (10)

4.4 The Individual’s Problem

Consider a single person seeking to maximize his or her expected lifetime utility
at age t, t = tr+1, ..., T , where tr is the retirement age.

To be categorically needy, this person’s income and assets need to be below Y
¯

and Ad, respectively. Besides being the maximum amount of income (excluding dis-
regards) that one can have and still qualify for SSI/Medicaid, Y

¯
is also the maximum

SSI benefit that one can receive.
Note that Medicaid and SSI apply to income gross of taxes. Let at denote assets

and r the real interest rate. The SSI benefit equals Y
¯
−max{yt + rat − yd, 0}, where

yd is the income disregard.
If a person is categorically needy and applies for SSI and Medicaid, he receives the

SSI transfer and Medicaid goods and services as dictated by his medical needs shock
and utility floor. The combined SSI/Medicaid transfer for the categorically needy is
thus given by:

bc
(
at, yt, µ(·)

)
= Y

¯
−max{yt+rat−yd, 0}+max

{
0, x

¯c
−max{at+Y

¯
−Ad, 0}

}
, (11)

Under this formulation, agents with assets in excess of the disregard Ad can spend
down their wealth and qualify for Medicaid.

If the person’s total income is above Y
¯
and or assets are above and Ad, she is not

eligible for SSI. If the person applies for Medicaid, transfers are given by

bm
(
at, yt, µ(·)

)
= max

{
0, x

¯m
(·)−max{at + rat + yt − Ad, 0}

}
, (12)

where we assume that the asset disregard Ad is the same as under the categorically
needy pathway.

Each period eligible individuals choose whether to receive Medicaid or not. We
will use the indicator function IM to denote this choice, with IM = 1 if the person
applies for Medicaid and IM = 0 if the person does not apply.

When the person dies, any remaining assets are left to his or her heirs. We denote
with e the estate net of taxes. Estates are linked to assets by

et = e(at) = at −max{0, τ · (at − x̃)}.

The parameter τ denotes the tax rate on estates in excess of x̃, the estate exemption
level. The utility the household derives from leaving the estate e is

φ(e) = θ
(e+ k)

1− ν

(1−ν)

,
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where θ is the intensity of the bequest motive, while k determines the curvature of
the bequest function and hence the extent to which bequests are luxury goods.

Using β to denote the discount factor, we can then write the individual’s value
function as:

Vt(at, g, ht, I, ζt, ξt) = max
ct,mt,at+1,IM

{
u(ct, mt, µ(·))

+ βsg,h,I,tEt

(
Vt+1(at+1, g, ht+1, I, ζt+1, ξt+1)

)

+ β(1− sg,h,I,t)θ
(e(at+1) + k)

1− ν

(1−ν)
}
, (13)

subject to the law of motion for the shocks and the following constraints. If IM = 0,
i.e., the person does not apply for SSI and Medicaid.

at+1 = at + yn(rat + yt)− ct − q(ht)mt ≥ 0, (14)

where the function yn(·) converts pre-tax to post-tax income. If IM = 1, i.e., the
person applies for SSI and Medicaid, we have

at+1 = bi(·) + at + yn(rat + yt)− ct − q(ht)mt ≥ 0, (15)

at+1 ≤ min{Ad, at}, (16)

where bi(·) = bc(·) if yt + rat − yd ≤ Y
¯
and bi(·) = bm(·) otherwise. Equations (14)

and (15) both prevent the individual from borrowing against future income.
To express the dynamic programming problem as a function of ct only, we can

derive mt as a function of ct by using the optimality condition implied by the in-
tratemporal allocation decision. Suppose that at time t the individual decides to
spend the total xt on consumption and out-of-pocket payments for medical goods.
The optimal intratemporal allocation then solves:

L =
1

1− ν
c1−ν
t + µ(·) 1

1− ω
m1−ω

t + λt (xt −mtq(ht)− ct) ,

where λt is the multiplier on the intratemporal budget constraint. The first-order
conditions for this problem reduce to

mt =

(
µ(·)
q(ht)

)1/ω

c
ν/ω
t . (17)

This expression can be used to eliminate mt from the dynamic programming problem
in equation (13).
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5 Estimation procedure

We adopt a two-step strategy to estimate the model. In the first step, we estimate
or calibrate those parameters that can be cleanly identified outside our model. For
example, we estimate mortality rates from raw demographic data. In the second step,
we estimate the rest of the model’s parameters (ν,ω,β,u

¯c
,u
¯m

, and the parameters of
lnµ(·)) with the method of simulated moments (MSM), taking as given the parameters
that were estimated in the first step. In particular, we find the parameter values that
allow simulated life-cycle decision profiles to “best match” (as measured by a GMM
criterion function) the profiles from the data. The moment conditions that comprise
our estimator are:

1. To better evaluate the effects of Medicaid insurance, we match the fraction of
people on Medicaid by PI quintile, cohort and age (with the top two permanent
income quintiles merged together).

2. Because the effects of Medicaid depend directly on an individual’s asset hold-
ings, we match median asset holdings by birth-year cohort, permanent income,
and calendar year. We sort individuals into PI quintiles, and the 5 birth-year
cohorts described in section 3. We then compare data and model-generated cell
medians in 5 different years (1998, 2000, 2002, 2004, and 2006).5

3. We match the median and 90th percentile of the out-of-pocket medical expense
distribution in each year-cohort-PI cell (the bottom two quintiles are merged).
Because the AHEAD’s medical expense data are reported net of any Medicaid
payments, we deduct government transfers from the model-generated expenses
before making any comparisons.

4. To capture the dynamics of medical expenses, we match the first and second
autocorrelations for medical expenses in each year-cohort-PI cell.

The mechanics of our MSM approach are as follows. We compute life-cycle histo-
ries for a large number of artificial individuals. Each of these individuals is endowed
with a value of the state vector (t, at, g, ht, I) drawn from the data distribution for
1996, and each is assigned the entire health and mortality history realized by the
person in the AHEAD data with the same initial conditions. The simulated medical
needs shocks ζ and ξ are Monte Carlo draws from discretized versions of our estimated
shock processes.

We discretize the asset grid and, using value function iteration, we solve the
model numerically. This yields a set of decision rules, which, in combination with the
simulated endowments and shocks, allows us to simulate each individual’s net worth,
medical expenditures, health, and mortality. We then compute asset, medical expense

5Simulated agents are endowed with asset levels drawn from the 1996 data distribution. Cells
with less than 10 observations are excluded from the moment conditions.
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and Medicaid profiles from the artificial histories in the same way as we compute
them from the real data. We use these profiles to construct moment conditions, and
evaluate the match using our GMM criterion. We search over the parameter space for
the values that minimize the criterion. Appendix A contains a detailed description
of our moment conditions, the weighting matrix in our GMM criterion function, and
the asymptotic distribution of our parameter estimates.

6 First-step estimation results

In this section, we briefly discuss the life-cycle profiles of the stochastic variables
used in our dynamic programming model. The process for income is estimated using
the procedure in in De Nardi et al. [11], and is described in more detail there. The
procedure for estimating demographic transition probabilities and and co-pay rates
are new.

6.1 Income profiles

We model non-asset income as a function of age, sex, health status, and the
individual’s PI ranking. Figure 5 presents average income profiles, conditional on
permanent income quintile, computed by simulating our model. In this simulation
we do not let people die, and we simulate each person’s financial and medical history
up through the oldest surviving age allowed in the model. Since we rule out attrition,
this picture shows how income evolves over time for the same sample of elderly people.
Figure 5 shows that average annual income ranges from about $4,000 per year in the
bottom PI quintile to about $20,000 in the top quintile; median wealth holdings for
the two groups are zero and just under $200,000, respectively.

Figure 5: Average income, by permanent income quintile.
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6.2 Mortality and health status

We estimate health transitions and mortality rates simultaneously by fitting the
transitions observed in the HRS to a multinomial logit model. We allow the transition
probabilities to depend on age, sex, current health status, and permanent income.
We estimate annual transition rates: combining annual transition probabilities in
consecutive years yields two-year transition rates we can fit to the AHEAD data.
Appendix B gives details on the procedure.

Using the estimated transition probabilities, we simulate demographic histories,
beginning at age 70, for different gender-PI-health combinations. Table 1 shows
life expectancies. We find that rich people, women, and healthy people live much
longer than their poor, male, and sick counterparts. For example, a male at the 10th
permanent income percentile in a nursing home expects to live only 3.5 more years,
while a female at the 90th percentile in good health expects to live 16.1 more years.

Males Females
Income Nursing Bad Good Nursing Bad Good
Percentile Home Health Health Home Health Health All†

10 3.53 5.86 7.22 6.02 9.99 11.97 10.38
30 3.61 6.40 8.14 6.41 10.92 13.04 11.36
50 3.77 7.05 9.11 6.85 11.94 14.18 12.36
70 3.98 7.81 10.10 7.38 12.96 15.20 13.40
90 4.26 8.61 11.01 8.05 13.97 16.14 14.31

By gender:‡

Men 9.41
Women 13.54

By health status:⋄

Bad Health 10.56
Good Health 13.93

Notes: Life expectancies calculated through simulations using estimated health transi-

tion and survivor functions. † Using gender and health distributions for entire pop-

ulation; ‡ Using health and permanent income distributions for each gender; ⋄ Using

gender and permanent income distributions for each health status group.

Table 1: Life expectancy in years, conditional on reaching age 70.

Another important saving determinant is the risk of requiring nursing home care.
Table 2 shows the probability at age 70 of ever entering a nursing home. The calcu-
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lations show that 30.1% of women will ultimately enter a nursing home, as opposed
to 17.9% for men. These numbers are lower than those from the Robinson model
described in Brown and Finkelstein [4], which show 27% of 65-year-old men and 44%
of 65-year-old women require nursing home care. One reason we find lower numbers
is that the Robinson model is based on older data, and nursing home utilization has
declined in recent years (Alecxih [1]).

Males Females
Income Bad Good Bad Good
Percentile Health Health Health Health All†

10 15.9 17.6 26.6 28.8 26.0
30 15.8 17.8 27.3 29.6 26.4
50 15.7 18.1 27.8 30.6 27.1
70 16.1 19.0 29.0 32.0 27.9
90 16.4 18.8 30.2 33.2 29.4

By gender:‡

Men 17.9
Women 30.1

By health status:⋄

Bad Health 25.4
Good Health 29.0

Notes: Entry probabilities calculated through simulations using estimated health tran-

sition and survivor functions; † Using gender and health distributions for entire pop-

ulation; ‡ Using health and permanent income distributions for each gender; ⋄ Using

gender and permanent income distributions for each health status group.

Table 2: Probability of ever entering a nursing home, people alive at age 70.

6.3 Co-pay rates

The co-pay rate qt = q(ht) is the share of total billable medical spending not
paid by Medicare or private insurers. Thus, it is the share paid out-of-pocket or by
Medicaid. We allow it to differ depending on whether the person is in a nursing home
or not: qt = q(ht).

There are two problems with inferring co-pay rates using out-of-pocket medical
expenses and total billable medical expenses from the AHEAD data. First, total
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medical expense information are largely imputed in this data set. Second, since we
explicitly model Medicaid, we have to make sure that Medicaid payments are included
in our measure of total medical expenses. Unfortunately, the AHEAD data provide
no information on Medicaid payments.

For these reasons, to estimate co-pay rates for people not in a nursing home, we
use data from the 2005 panel of the Medical Expense Panel Survey (MEPS), which is
a representative sample of the non-institutionalized population. MEPS provides high
quality information on total billable medical expenses as well as the payor of those
expenses, including Medicaid. It does so by collecting medical expenses data from
health care providers as well as from individuals.

The co-pay rate for people not in a nursing home averages 29% in MEPS and does
not vary much with demographics. We compute these numbers by applying the same
data filters to MEPS that we used for the AHEAD data. Next, we estimate q(ht)
by taking the ratio of mean out-of-pocket spending plus Medicaid payments to mean
total medical expenses.

To estimate the co-pay rate for those in nursing homes we use data from the 2006
Medicare Current Beneficiary Survey (MCBS), which is a representative sample of
Medicare enrolees aged 65+. These data reveal that the co-pay rate for those in
nursing homes is 92%. For every dollar spent on nursing homes, 47 cents come from
Medicaid and 45 cents are from out of pocket, with only 8 cents coming from Medicare
or other sources. In our model, we round this number to 90%.

7 Second step results and model fit

7.1 Parameter values

Our parameter estimates are still preliminary, and we are exploring different spec-
ifications. Table 3 shows results for a specification that provides a good fit to the
data.

Our estimate of β, the discount factor is 1.16. This number has to be multiplied by
the survival probability to obtain the effective discount factor. As Table 1 shows, the
survival probability for our sample of older individuals is low, implying an effective
discount factor much lower than β.

The estimate of ν, the coefficient of relative risk aversion for “regular” consump-
tion, is 3.0, while the estimate of ω, the coefficient of relative risk aversion for medical
goods, is 3.35; the demand for medical goods is less elastic than the demand for con-
sumption.

The utility floors correspond to the utility levels a person gets when the medical
needs shifter µ equals 0 (no medical needs) and the person consumes $2,400 for the
categorically needy and $5,600 for the medically needy. It should be noted that the
medically needy are also guaranteed a minimum income level of $6,000, so that their
total consumption when healthy is $6,000 a year. However, when there are large
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ν: RRA, consumption 2.99
(0.033)

ω: RRA, medical expenditures 3.35
(0.041)

β: discount factor 1.156
(0.013)

u
¯c
: utility floor,† categorically needy 2,433

(130)

u
¯c
: utility floor,† medically needy 5,577

(140)

θ: bequest intensity NA
(NA)

k: bequest curvature (in 000s) NA
(NA)

† The estimated utility floor is indexed by the consumption level that provides the floor
when µ = 0.

Table 3: Estimated preference parameters. Standard errors are in parentheses below esti-
mated parameters. NA refers to parameters fixed for a given estimation .

medical needs, transfers are determined by the utility floor, and the medically needy
are more insured than the categorically needy.

We also estimate the coefficients for the mean of the logged medical needs shifter
µ(ht, ψt, t), the volatility scaler σ(ht, t) and the process for the shocks ζt and ξt. As
we show in the graphs that follow, the estimates for these parameters (available from
the authors on request) imply that the demand for medical services rises rapidly with
age.

We now turn to discussing how well the model fits the some key aspects of the
data and also look at some additional model implications.

7.2 Medicaid recipiency

Figure 6 compares the Medicaid recipiency profiles generated by the model (dashed
line) to those in the data (solid line) for the members of two birth-year cohorts. In
panel a, the lines at the far left of the graph are for the youngest cohort, whose
members in 1996 were aged 72-76, with an average age of 74. The second set of lines
are for the cohort aged 82-86 in 1996. Panel b displays the two other cohorts, starting
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a b

Figure 6: Medicaid recipiency by cohort and PI quintile: data (solid lines) and model
(dashed lines).

respectively at age 79 and 89. The graphs show that the model matches well both
the usage levels and their rise by age and permanent income.

7.3 Net worth profiles

a b

Figure 7: Median net worth by cohort and PI quintile: data (solid lines) and model
(dashed lines).

Figure 7 plots median net worth by age, cohort, and permanent income. Here
too the model does well, matching the observation that the savings patterns differ by
permanent income and that higher PI people don’t run down their assets until well
past age 90.

20



7.4 Medical expenses

Figure 8 displays median out-of-pocket medical expenses (that is, net of Medicaid
payments and private and public insurance co-pays) paid by people in the model and
in the data. Permanent income has a large effect on out-of-pocket medical expenses,
especially at older ages. Median medical expenses are less than $2,000 a year at
age 75. By age 100, they stay flat for those in the bottom quintile of the income
distribution but rise to over $6,000 for those at the top of the income distribution.
The model does a reasonable job of matching the key patterns in the data.

Figure 9 compares the 90th percentile of out-of-pocket medical expenses generated
by the model to those found in the data and thus provides a better idea of the tail
risk by age and permanent income. Here the model reproduces medical expenses of
$5,000 or less at age 74, staying flat over time for the lower PI people, but understates
the medical of the high PI people in their late nineties.

a b

Figure 8: Median out-of-pocket medical expenses by cohort and PI quintile: data (solid
lines) and model (dashed lines).

Turning to cross-sectional distributions, Figure 10 compares the cumulative dis-
tribution function (CDF) of out-of-pocket medical expenditures found in the AHEAD
data with that produced by the model. The model CDF fits the data well.
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a b

Figure 9: Ninetieth percentile of out-of-pocket medical expenses by cohort and PI quintile:
data (solid lines) and model (dashed lines).
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Figure 10: Cumulative distribution function of out-of-pocket medical expenses: data
(solid line) and model (lighter line).
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a b

Figure 11: Average medical expenses by age and permanent income. Panel a: paid out-
of-pocket. Panel b: paid out-of-pocket or by Medicaid.

a b

Figure 12: Average medical expenses by age and permanent income. Panel a: paid by
insurers. Panel b: total.

23



Figure 11 presents profiles that arise when the youngest cohort is simulated from
ages 74 to (potentially) 100. Panel a shows average out-of-pocket medical expenses,
which follow a pattern similar to that in Figures 8 and 9. Panel b of Figure 11 shows
the sum of medical expenses paid out-of-pocket and the expenses paid by Medicaid,
the latter measured as the increase in q(ht)mt generated by government transfers.
These sums also increase rapidly with age, going from around $3,500 at age 74 to
$50,000 at age 99. Medicaid allows poorer people to consume proportionally much
more medical goods and services than they pay for. As a result, the expense sum
shown in panel b rises more slowly with income than the out-of-pocket expenditures
shown in panel a.

Panel a of Figure 12 displays average medical expenses covered by private and
public insurers. These payments are very large and also increase by age and per-
manent income, reaching over $20,000 for the oldest members of the top permanent
income quintile. The oldest in the poorest permanent income quintile, however, also
benefit from these payments, which reach around $12,000 at age 98. Panel b of Fig-
ure 12 displays total medical expenses, which in this case also coincide with total
consumption of medical goods and services. Comparing the two panels makes it clear
that most elderly individuals consume far more medical care than they for pay out-
of-pocket. The increase in total medical expenses after retirement is very large, going
from around $10,000 at age 74 to $60,000 at age 100.

7.5 Utility floor, preference shocks, and implied insurance
system

Through the interaction of the utility floor and medical needs shocks, the model
has interesting implications on the insurance provided by means-tested programs.

Figure 13 describes the transfers generated by the model. Panel a of this figure
shows the fraction of individuals receiving transfers, while panel b shows average
transfers, taken across both recipients and non-recipients. Panel a shows that peo-
ple in the bottom two permanent income quintiles receive Medicaid at fairly high
rates throughout their retirement. Most of these people qualify through the categor-
ically needy pathway. People in the top income quintiles, in contrast, use Medicaid
much more heavily at older ages, when large medical expenditures make them eligible
through the medically needy pathway.

Panel b of Figure 13 shows average Medicaid transfers. While low-income people
are much more likely to qualify for Medicaid, the categorically needy provision allows
them to qualify with small medical needs. The medically needy provision allows high-
income people to qualify only when their medical expenses are high as well. Although
the poor on average receive more Medicaid benefits than the rich at younger ages, at
very old ages the two groups receive similar benefits.
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a b

Figure 13: Medicaid. Panel a: fraction receiving Medicaid. Panel b: average Medicaid
transfers.

8 The Distribution of Medicaid Insurance Benefits

In this section we perform some preliminary experiments to assess the amount of
redistribution that Medicaid produces.

8.1 The distribution of Medicaid payments

We estimate the Medicaid payments received by elderly individuals by simulating
our estimated model. Each simulated individual receives a value of the state vector
(t, at, g, ht, I) drawn from the data distribution of 72- to 76-year-olds in 1996. He or
she then receives a series of health, medical expense, and mortality shocks consistent
with the stochastic processes described in the model section, and is tracked to age 100.
We calculate the present discounted value of Medicaid payments for each simulated
individual.

The left-hand column of Table 4 reports the average present discounted value
of payments conditional on income quintile, gender and health status at age 74.
Surprisingly, those in the third income quintile receive the largest lifetime transfers
($31,200). Although the poor are more likely to be receiving Medicaid, the poor tend
to die before they develop the most costly health conditions. On the other hand, the
most rich, while having the most medical expenses, have the most resources to pay
for medical care themselves. The interaction of these two mechanisms leaves those in
the middle of the income distribution, who have more expensive medical conditions,
but still modest financial resources, as the ones receiving the most benefits.
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Women benefit more than men from Medicaid, both because they live longer and
because they tend to be poorer. Finally, those in good health at age 74 receive almost
as many benefits as those in bad health at 74, because they tend to live long enough
to require costly procedures and long nursing home stays.

Present
Income Discounted Annuity
Quintile Value Value

Bottom 22,800 2,890
Fourth 26,200 3,030
Third 31,200 3,300
Second 26,500 2,640
Top 19,600 1,950

Men 12,800 1,790
Women 27,500 2,790

In Good Health 24,700 2,410
In Bad Health 25,400 3,090

Table 4: Medicaid payments at age 74.

The right-hand column of Table 4 reports the annuity value of the same Medicaid
payments. We calculate the annuity value as the average present discounted sum
divided by the average lifespan (adjusted for discounting). The annuity value calcu-
lations show that an important part of the reason for why rich people benefit from
Medicaid is the mechanical relationship between income and lifespan. Rich people
have more years to collect benefits. Another part of the explanation, however, is that
the older ages at which rich people are more likely to be alive are the ages when
the most expensive medical conditions hit; all else equal, average transfers are an
increasing function of one’s lifespan.

The AHEAD data does not have direct measures of Medicaid payments. We must
infer these payments indirectly using the model. In order to verify that these model
predictions are accurate, we are in the process of acquiring MCBS data. Preliminary
analysis from the MCBS suggests that we might be overstating Medicaid payments
to the richest, but that these payments are considerable for this group. For example,
average payments to those in the bottom two quintiles of the income distribution are
$3,628 per year, whereas those in the top three quintiles receive on average $1,096
per year. But these estimates are still extremely preliminary and do not correspond
exactly to the type of life-long computations that we perform in the model.
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Present
Income Discounted Annuity
Quintile Value Value

Bottom 85,400 10,850
Fourth 108,000 12,480
Third 148,700 15,740
Second 184,300 18,410
Top 228,000 22,620

Men 130,500 18,220
Women 168,600 17,090

In Good Health 181,600 17,720
In Bad Health 134,700 16,370

Table 5: Consumption of medical goods and services at age 74.

Table 5 confirms that the rich do in fact consume more medical services than
the poor: people in the top PI quintile spend over twice as much per year ($22,620)
on medical goods as people at the bottom ($10,850). While this difference in part
reflects wealth effects, it also illustrates the way in which medical needs rise with age.
Table 6 shows that out-of-pocket medical expenses rise even more quickly with income.
Although Medicaid delivers fairly similar benefits across the income distribution in
absolute terms, it pays a much larger fraction of poor people’s expenses.

Finally, Table 7 shows that non-medical consumption rises more quickly in income
than medical spending. Given that the curvature parameter for medical expenditures
ω is larger than the curvature parameter for non-medical consumption ν, this is not
surprising.
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Bottom 10,800 1,370
Fourth 15,100 1,740
Third 24,800 2,630
Second 41,400 4,130
Top 62,700 6,220

Men 32,200 4,500
Women 35,700 3,620

In Good Health 42,200 4,120
In Bad Health 24,200 2,940

Table 6: Out-of-Pocket costs for medical goods and services at age 74.

8.2 Compensating differentials

If Medicaid provides retirees with insurance they would not otherwise have, the
value retirees place on Medicaid may greatly exceed the actuarial value of expected
benefits. To explore this hypothesis, we cut the consumption value of the utility
floors in half, and simulate our model again. We measure changes in payments, and
we calculate compensating differentials. In particular, we find the increase in assets
that would make an individual with the reduced utility floor as well off—as measured
by her value function—as an otherwise identical individual with the full utility floor.

Table 8 compares lifetime Medicaid benefits under the benchmark and reduced
utility floors. Reducing the floors significantly reduces Medicaid benefits, with the
average lifetime benefit falling by more than $14,000.

Figure 14 shows compensating differentials at age 74 for women who are in bad
health and are facing the median realizations of both medical needs shocks. Results
are shown for women at the 0th, 25th, 50th, 75th, and 100th permanent income
percentiles. Figure 14 immediately shows that the value these women place on having
better Medicaid coverage is several times larger than the increase in expected benefits.
Moreover, with the exception of people at the very bottom of the income distribution,
the value of Medicaid is increasing in both income and assets. Rich people, with more
to lose, most value the insurance provided by Medicaid. This can also be seen in the
simulated profiles shown in Figure 15. Reducing the utility floor leads wealthier
households to accumulate considerably more assets.

The Medicaid valuation of the very poor behaves differently because they qualify
for Medicaid under the categorically needy, rather than medically needy, pathway.
Because the categorically needy utility floor is much lower than the medically needy
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Present
Income Discounted Annuity
Quintile Value Value

Bottom 51,200 6,500
Fourth 66,600 7,690
Third 101,900 10,790
Second 154,500 15,430
Top 222,300 22,060

Men 129,000 18,010
Women 133,600 13,540

In Good Health 160,400 15,660
In Bad Health 91,400 11,110

Table 7: Consumption at age 74.

Income Benchmark Reduced
Quintile Floor Floor Difference

Bottom 22,800 11,000 11,800
Fourth 26,200 12,600 13,600
Third 31,200 12,700 18,500
Second 26,500 10,600 15,900
Top 19,600 7,600 12,000

Men 12,800 5,000 7,800
Women 27,500 11,800 15,700

In Good Health 24,700 10,300 14,400
In Bad Health 25,400 11,100 14,300

Table 8: Present discounted value of Medicaid payments at age 74 for different levels of
the utility floor
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floor, cutting the categorically needy floor in half exposes individuals to more con-
sumption risk, increasing the value of better coverage. The categorically needy also
face separate income and asset tests; the medically needy face a simple cash-on-hand
threshold. As a result, as the income poor hold increasing amounts of assets, they
are increasingly likely to qualify for Medicaid under the medically needy provision.
This switch in coverage causes compensating differentials for the most income poor
(the “bottom” group) to initially fall in assets.

Figure 14: Compensating differentials by assets and permanent income quintile.

9 Conclusion

In this paper we assess both the distribution of Medicaid payments and the valu-
ation placed on these payments by elderly singles. Our initial results for age 74 show
that even though the poorest individuals use Medicaid most frequently, on average
more payments go to middle income individuals. Although richer people qualify for
Medicaid only if their medical conditions deplete their financial resources, they live
longer and are more likely to face expensive medical conditions. This dynamic leaves
middle income people, who lack the financial resources to thoroughly self-insure, as
the ones receiving the most benefits. People at the top of the income distribution have
the highest lifetime medical expenses, but qualify for Medicaid much less frequently.
They nonetheless receive lifetime payments almost as large as those for people at the
bottom of the income distribution, who die much more quickly.

Once one accounts for risk, Medicaid is even less redistributive. Compensating
differential calculations suggest that although all individuals value Medicaid well in
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Figure 15: Net worth by age and permanent income. Dashed line: benchmark, solid line:
experiment with less generous utility floor.

excess of the payments they expect to receive, it is the rich, who have the most to
lose, who value Medicaid most highly.

31



References

[1] Lisa Alecxih. Nursing home use by “oldest old” sharply declines. Mimeo, 2006.

[2] Joseph G. Altonji and Lewis M. Segal. Small sample bias in gmm estimation of
covariance structures. Journal of Business and Economic Statistics, 14(3):353–
366, 1996.

[3] Robert Brook, John E. Ware, William H. Rogers, Emmett B. Keeler, Allyson R.
Davies, Cathy A. Donald, George A. Goldberg, Kathleen N. Lohr, Patricia C.
Masthay, and Joseph P. Newhouse. Does free care improve adults’ health? results
from a randomized trial. New England Journal of Medicine, 309(23):1426–1434,
1983.

[4] Jeff Brown and Amy Finkelstein. The interaction of public and private insurance:
Medicaid and the long term care insurance market. NBER Working Paper 10989,
2004.

[5] Jeff Brown and Amy Finkelstein. The interaction of public and private insurance:
Medicaid and the long term care insurance market. American Economic Review,
98(5):837–880, 2008.

[6] Jeffrey R. Brown, Norma B. Coe, and Amy Finkelstein. Medicaid crowd-out of
private long-term care insurance demand: Evidence from the health and retire-
ment survey. In James M. Poterba, editor, Tax Policy and the Economy. MIT
Press, 2007.

[7] Moshe Buchinsky. Recent advances in quantile regression models: A practical
guideline for empirical research. Journal of Human Resources, 33:88–126, 1998.

[8] David Card, Carlos Dobkin, and Nicole Maestas. Does medicare save lives? The

Quarterly Journal of Economics, 124(2):597–636, 2009.

[9] Gary Chamberlain. Comment: Sequential moment restrictions in panel data.
Journal of Business & Economic Statistics,, 10(1):20–26, 1992.

[10] Joseph Doyle. Returns to local-area healthcare spending: Using health shocks
to patients far from home. American Economic Journal: Applied Economics,
3(3):221–243, 2011.

[11] Mariacristina De Nardi, Eric French, and John B. Jones. Why do the elderly
save? the role of medical expenses. Journal of Political Economy, 118(1):39–75,
2010.

[12] Darrell Duffie and Kenneth J. Singleton. Simulated moments estimation of
markov models of asset prices. Econometrica, 61(4):929–952, 1993.

32



[13] Zhigang Feng. Macroeconomic consequences of alternative reforms to the health
insurance system in the u.s. Mimeo, 2009.

[14] Amy Finkelstein and Robin McKnight. What did medicare do? the initial impact
of medicare on mortality and out of pocket medical spending. Journal of Public
Economics, 92(7):1644–1669, 2008.

[15] Amy Finkelstein, Sarah Taubman, Bill Wright, Mira Bernstein, Jonathan
Gruber, Heidi Allen Joseph P. Newhouse, Katherine Baicker, and Oregon
Health Study Group. The oregon health insurance experiment: Evidence from
the first year. Quarterly Journal of Economics, 127(3):1057–1106, 2012.

[16] Elliott S. Fisher, David E. Wennberg, Therese A. Stukel, Daniel J. Gottlieb, F.L.
Lucas, and Etoile L. Pinder. The implications of regional variations in medicare
spending. part 2: Health outcomes and satisfaction with care. Annals of Internal
Medicine, 138(4):288–322, 2003.

[17] Raquel Fonseca, Pierre-Carl Michaud, Titus Galama, and Arie Kapteyn. On the
rise of health spending and longevity. Rand Working Paper WR-722, 2009.

[18] Eric French and John Bailey Jones. On the distribution and dynamics of health
care costs. Journal of Applied Econometrics, 19(4):705–721, 2004.

[19] Michael Grossman. On the concept of health capital and the demand for health.
Journal of Political Economy, 80(2):223–255, 1972.

[20] R. Glenn Hubbard, Jonathan Skinner, and Stephen P. Zeldes. Expanding the
life-cycle model: Precautionary saving and public policy. American Economic

Review, 84:174–179, 1994.

[21] R. Glenn Hubbard, Jonathan Skinner, and Stephen P. Zeldes. Precautionary
saving and social insurance. Journal of Political Economy, 103(2):360–399, 1995.

[22] Michael D. Hurd. Mortality risk and bequests. Econometrica, 57(4):779–813,
1989.

[23] Michael D. Hurd, Daniel McFadden, and Angela Merrill. Predictors of mortality
among the elderly. Working Paper 7440, National Bureau of Economic Research,
1999.

[24] Ahmed Khwaja. Estimating willingness to pay for medicare using a dynamic
life-cycle model of demand for health insurance. Journal of Econometrics,
156(1):130–147, 2010.

[25] Ralph S. J. Koijen, Stijn Van Nieuwerburgh, and Motohiro Yogooijen. Health
and mortality delta: Assessing the welfare cost of household insurance choice.
Mimeo, 2012.

33



[26] Ruud H. Koning. Kernel: A gauss library for kernel estimation.
http://www.xs4all.nl/

[27] Karen Kopecky and Tatyana Koreshkova. The impact of medical and nursing
home expenses and social insurance policies on savings and inequality. Mimeo,
2009.

[28] Laurence J. Kotlikoff. Health expenditures and precautionary savings. In Lau-
rence J. Kotlikoff, editor, What Determines Saving? Cambridge, MIT Press,
1988, 1988.

[29] Charles F. Manski. Analog Estimation Methods in Econometrics. Chapman and
Hall, 1988.

[30] Samuel Marshall, Kathleen M. McGarry, and Jonathan S. Skinner. The risk of
out-of-pocket health care expenditure at the end of life. Working Paper 16170,
National Bureau of Economic Research, 2010.

[31] Thad Mirer. The wealth-age relation among the aged. American Economic

Review, 69:435–443, 1979.

[32] Whitney K. Newey. Generalized method of moments specification testing. Jour-
nal of Econometrics, 29(3):229–256, 1985.

[33] Whitney K. Newey and Daniel L. McFadden. Large sample estimation and
hypothesis testing. In Robert Engle and Daniel L. McFadden, editors, Handbook
of Econometrics, Volume 4. Elsevier, Amsterdam, 1994.

[34] The Kaiser Commission on Medicaid and the Uninsured. Medicaid: A Primer.
Menlo Park, CA, The Henry J. Kaiser Family Foundation, 2010.

[35] Serdar Ozkan. Income inequality and health care expenditures over the life cycle.
Mimeo, Federal Reserve Board, 2011.

[36] Ariel Pakes and David Pollard. Simulation and the aysmptotics of optimization
estimators. Econometrica, 57(5):1027–1057, 1989.

[37] Michael G. Palumbo. Uncertain medical expenses and precautionary saving near
the end of the life cycle. Review of Economic Studies, 66:395–421, 1999.

[38] Jorn-Steffen Pischke. Measurement error and earnings dynamics: Some estimates
from the PSID validation study. Journal of Business & Economics Statistics,
13(3):305–314, 1995.

[39] James M. Poterba, Steven F. Venti, and David A. Wise. The asset cost of poor
health. Working Paper 16389, National Bureau of Economic Research, 2010.

34



[40] James Powell. Estimation of semiparametric models. In Robert Engle and
Daniel L McFadden, editors, Handbook of Econometrics, Volume 4. Elsevier,
Amsterdam, 1994.

[41] Susann Rohwedder, Steven J. Haider, and Michael Hurd. Increases in wealth
among the elderly in the early 1990s: How much is due to survey design? Review

of Income and Wealth, 52(4):509–524, 2006.

[42] John Karl Scholz, Ananth Seshadri, and Surachai Khitatrakun. Are americans
saving optimally for retirement? Journal of Political Economy, 114:607–643,
2006.

[43] Motohiro Yogo. Portfolio choice in retirement: Health risk and the demand for
annuities, housing, and risky assets. Mimeo, University of Pennsylvania, 2009.

35



Appendix A: Moment conditions and asymptotic distribution
of parameter estimates

Recall that we estimate the parameters of our model in the two steps. In the
first step, we estimate the vector χ, the set of parameters than can be estimated
with explicitly using our model. In the second step, we use the method of simulated
moments (MSM) to estimate the remaining parameters, which are contained in the
M × 1 vector ∆. The elements of ∆ are ν, ω, β, c, θ, k, and the parameters of
lnµ(·). Our estimate, ∆̂, of the “true” parameter vector ∆0 is the value of ∆ that
minimizes the (weighted) distance between the life-cycle profiles found in the data
and the simulated profiles generated by the model.

For each calendar year t ∈ {t0, ..., tT} = {1996, 1998, 2000, 2002, 2004, 2006}, we
match median assets for QA = 5 permanent income quintiles in P = 5 birth year
cohorts.6 The 1996 (period-t0) distribution of simulated assets, however, is boot-
strapped from the 1996 data distribution, and thus we match assets to the data for
1998, ..., 2006. In addition, we require each cohort-income-age cell have at least 10
observations to be included in the GMM criterion.

Suppose that individual i belongs to birth cohort p and his permanent income
level falls in the qth permanent income quintile. Let apqt(∆, χ) denote the model-
predicted median asset level for individuals in individual i’s group at time t, where χ
includes all parameters estimated in the first stage (including the permanent income
boundaries). Assuming that observed assets have a continuous conditional density,
apqt will satisfy

Pr
(
ait ≤ apqt(∆0, χ0) |p, q, t, individual i observed at t

)
= 1/2.

The preceding equation can be rewritten as a moment condition (Manski [29], Pow-
ell [40] and Buchinsky [7]). In particular, applying the indicator function produces

E
(
1{ait ≤ apqt(∆0, χ0)} − 1/2 |p, q, t, individual i observed at t

)
= 0. (18)

Letting Iq denote the values contained in the qth permanent income quintile, we can
convert this conditional moment equation into an unconditional one (e.g., Chamber-
lain [9]):

E
(
[1{ait ≤ apqt(∆0, χ0)} − 1/2]× 1{pi = p} × 1{Ii ∈ Iq}

× 1{individual i observed at t}
∣∣ t
)
= 0 (19)

for p ∈ {1, 2, ..., P}, q ∈ {1, 2, ..., QA}, t ∈ {t1, t2..., tT }.
6Because we do not allow for macro shocks, in any given cohort t is used only to identify the

individual’s age.
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We also include several moment conditions relating to medical expenses. To use
these moment conditions, we first simulate medical expenses at an annual frequency,
and then take two-year averages to produce a measure of medical expenses comparable
to the ones contained in the AHEAD.

As with assets, we divide individuals into 5 cohorts and match data from 5 waves
covering the period 1998-2006. The moment conditions for medical expenses are
split by permanent income as well. However, we combine the bottom two income
quintiles, as there is very little variation in out-of-pocket medical expenses in the
bottom quintile until very late in life; QM = 4.

We require the model to match the median out-of-pocket medical expenditures
in each cohort-income-age cell. Let m50

pqt(∆, χ) denote the model-predicted 50th per-
centile for individuals in cohort p and permanent income group q at time (age) t.
Proceeding as before, we have the following moment condition:

E
(
[1{mit ≤ m50

pqt(∆0, χ0)} − 0.5]× 1{pi = p} × 1{Ii ∈ Iq}

× 1{individual i observed at t}
∣∣ t
)
= 0 (20)

for p ∈ {1, 2, ..., P}, q ∈ {1, 2, ..., QM}, t ∈ {t1, t2..., tT}.
To fit the upper tail of the medical expense distribution, we require the model

to match the 90th percentile of out-of-pocket medical expenditures in each cohort-
income-age cell. Letting m90

pqt(∆, χ) denote the model-predicted 90th percentile, we
have the following moment condition:

E
(
[1{mit ≤ m90

pqt(∆0, χ0)} − 0.9]× 1{pi = p} × 1{Ii ∈ Iq}

× 1{individual i observed at t}
∣∣ t
)
= 0 (21)

for p ∈ {1, 2, ..., P}, q ∈ {1, 2, ..., QM}, t ∈ {t1, t2..., tT}.
To pin down the autocorrelation coefficient for ζ (ρm), and its contribution to the

total variance ζ + ξ, we require the model to match the first and second autocorrela-
tions of logged medical expenses. Define the residual Rit as

Rit = ln(mit)− lnmpqt,

lnmpqt = E(ln(mit)|pi = p, qi = q, t)

and define the standard deviation σpqt as

σpqt =
√
E
(
R2

it|pi = p, qi = q, t
)
.

Both lnmpqt and σpqt can be estimated non-parametrically as elements of χ. Using
these quantities, the autocorrelation coefficient ACpqtj is:

ACpqtj = E

(
RitRi,t−j

σpqt σpq,t−j

∣∣∣∣∣ pi = p, qi = q

)
.
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Let ACpqtj(∆, χ) be the jth autocorrelation coefficient implied by the model, calcu-
lated using model values of lnmpqt and σpqt. The resulting moment condition for the
first autocorrelation is

E

([
RitRi,t−1

σpqt σpq,t−1
− ACpqt1(∆0, χ0)

]
× 1{pi = p} × 1{Ii ∈ Iq}

× 1{individual i observed at t & t− 1}
∣∣∣∣ t
)

= 0. (22)

The corresponding moment condition for the second autocorrelation is

E

([
RitRi,t−2

σpqt σpq,t−2
− ACpqt2(∆0, χ0)

]
× 1{pi = p} × 1{Ii ∈ Iq}

× 1{individual i observed at t & t− 2}
∣∣∣∣ t
)

= 0. (23)

Finally, we match Medicaid utilization (take-up) rates. Once again, we divide
individuals into 5 cohorts, match data from 5 waves, and stratify the data by perma-
nent income. We combine the top two quintiles because in many cases no one in the
top permanent income quintile is on Medicaid: QU = 4.

Let upqt(∆, χ) denote the model-predicted utilization rate for individuals in cohort
p and permanent income group q at age t. Let uit be the {0, 1} indicator that equals
1 when individual i receives Medicaid. The associated moment condition is

E
([
uit − upqt(∆0, χ0)

]
× 1{pi = p} × 1{Ii ∈ Iq}

× 1{individual i observed at t}
∣∣ t
)
= 0 (24)

for p ∈ {1, 2, ..., P}, q ∈ {1, 2, ..., QU}, t ∈ {t1, t2..., tT}.
To summarize, the moment conditions used to estimate model with endogenous

medical expenses consist of: the moments for asset medians described by equation
(19); the moments for median medical expenses described by equation (20); the mo-
ments for the 90th percentile of medical expenses described by equation (21); the
moments for the autocorrelations of logged medical expenses described by equations
(22) and (23); and the moments for the Medicaid utilization rates described by equa-
tion (24). In the end, we have a total of J = 478 moment conditions.

Suppose we have a dataset of I independent individuals that are each observed
at up to T separate calendar years. Let ϕ(∆;χ0) denote the J-element vector of
moment conditions described immediately above, and let ϕ̂I(.) denote its sample

analog. Letting ŴI denote a J × J weighting matrix, the MSM estimator ∆̂ is given
by

argmin
∆

I

1 + τ
ϕ̂I(∆;χ0)

′ŴIϕ̂I(∆;χ0),
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where τ is the ratio of the number of observations to the number of simulated obser-
vations.

In practice, we estimate χ0 as well, using the approach described in the main text.
Computational concerns, however, compel us to treat χ0 as known in the analysis that
follows. Under regularity conditions stated in Pakes and Pollard [36] and Duffie and
Singleton [12], the MSM estimator ∆̂ is both consistent and asymptotically normally
distributed: √

I
(
∆̂−∆0

)
 N(0,V),

with the variance-covariance matrix V given by

V = (1 + τ)(D′WD)−1D′WSWD(D′WD)−1,

where: S is the variance-covariance matrix of the data;

D =
∂ϕ(∆;χ0)

∂∆′

∣∣∣
∆=∆0

(25)

is the J×M gradient matrix of the population moment vector; andW = plimI→∞{ŴI}.
Moreover, Newey [32] shows that if the model is properly specified,

I

1 + τ
ϕ̂I(∆̂;χ0)

′R−1ϕ̂I(∆̂;χ0) χ2
J−M ,

where R−1 is the generalized inverse of

R = PSP,

P = I−D(D′WD)−1D′W.

The asymptotically efficient weighting matrix arises when ŴI converges to S−1,
the inverse of the variance-covariance matrix of the data. When W = S−1, V sim-
plifies to (1 + τ)(D′S−1D)−1, and R is replaced with S.

But even though the optimal weighting matrix is asymptotically efficient, it can
be biased in small samples. (See, for example, Altonji and Segal [2].) To check for
robustness, we also use a “diagonal” weighting matrix, as suggested by Pischke [38].
This diagonal weighting scheme uses the inverse of the matrix that is the same as S
along the diagonal and has zeros off the diagonal of the matrix. This matrix delivers
parameter estimates very similar to our benchmark estimates.

We estimate D, S, and W with their sample analogs. For example, our estimate
of S is the J × J estimated variance-covariance matrix of the sample data. When
estimating this matrix, we use sample statistics, so that apqt(∆, χ) is replaced with
the sample median for group pqt.

One complication in estimating the gradient matrix D is that the functions in-
side the moment condition ϕ(∆;χ) are non-differentiable at certain data points; see
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equation (19). This means that we cannot consistently estimate D as the numerical
derivative of ϕ̂I(.). Our asymptotic results therefore do not follow from the standard
GMM approach, but rather the approach for non-smooth functions described in Pakes
and Pollard [36], Newey and McFadden [33] (section 7), and Powell [40].

To find D, it is helpful to rewrite equation (19) as

Pr
(
pi = p & Ii ∈ Iq & individual i observed at t

)
×

[∫ apqt(∆0,χ0)

−∞

f
(
ait
∣∣ p, Ii ∈ Iq, t

)
dait − 1

2

]
= 0. (26)

It follows that the rows of D are given by

Pr
(
pi = p & Ii ∈ Iq & individual i observed at t

)
×

f
(
apqt

∣∣ p, Ii ∈ Iq, t
)
× ∂apqt(∆0;χ0)

∂∆′
. (27)

In practice, we find f
(
apfqt|p, q, t

)
, the conditional p.d.f. of assets evaluated at the

median apqt, with a kernel density estimator written by Koning [26]. The gradients
for equations (20) and (21) are found in a similar fashion.

Appendix B: Demographic Transition Probabilities in the HRS/AHEAD

Let ht ∈ {0, 1, 2, 3} denote death (ht = 0) and the 3 mutually exclusive health
states of the living (nursing home = 1, bad = 2, good = 3, respectively). Let x be
a vector that includes a constant, age, permanent income, gender, and powers and
interactions of these variables, and indicators for previous health and previous health
interacted with age. Our goal is to construct the likelihood function for the transition
probabilities.

Using a multivariate logit specification, we have, for i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3},

πij,t = Pr(ht+1 = j|ht = i)

= γij

/ ∑

k∈{0,1,2,3}

γik,

γi0 ≡ 1, ∀i,
γ1k = exp (xβk) , k ∈ {1, 2, 3},
γ2k = exp (xβk) , k ∈ {1, 2, 3},
γ3k = exp (xβk) , k ∈ {1, 2, 3},

where {βk}3k=0 are sets of coefficient vectors and of course Pr(ht+1 = 0|ht = 0) = 1.
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The formulae above give 1-period-ahead transition probabilities,
Pr(ht+1 = j| ht = i). What we observe in the AHEAD dataset, however, are 2-period
ahead probabilities, Pr(ht+2 = j|ht = i). The two sets of probabilities are linked,
however, by

Pr(ht+2 = j|ht = i) =
∑

k

Pr(ht+2 = j| ht+1 = k) Pr(ht+1 = k|ht = i)

=
∑

k

πkj,t+1πik,t.

This allows us to estimate {βk} directly from the data using maximum likelihood.

41


	Medicaid Insurance in Old Age
	Mariacristina De Nardi, Eric French, and John Bailey Jones
	Acknowledgements
	Abstract
	Authors’ Acknowledgements
	1 Introduction
	2 Brief literature review
	3 Institutional background and data highlights
	3.1 Institutional background
	3.2 The AHEAD dataset 
	3.3 Medicaid Recipiency
	Figure 1: Medicaid recipiency rates by age, cohort, and permanent income. Thicker lines refer to higher PI groups.
	Figure 2: Median out-of-pocket medical expenditures by age, cohort, and permanent income.
	3.5 Net worth profiles 
	Figure 3: 90th percentile out-of-pocket medical expenditures by age, cohort, and permanent income. 
	4 The model
	4.1 Preferences
	Figure 4: Median assets by age, cohort, and permanent income. Thicker lines refer to higher PI groups.
	4.2 Insurance Mechanisms
	4.3 Uncertainty and Non-Asset Income
	4.4 The Individual’s Problem
	5 Estimation procedure
	6 First-step estimation results
	6.1 Income profiles
	Figure 5: Average income, by permanent income quintile.
	6.2 Mortality and health status
	Table 1: Life expectancy in years, conditional on reaching age 70.
	Table 2: Probability of ever entering a nursing home, people alive at age 70.
	6.3 Co-pay rates
	7 Second step results and model
	7.1 Parameter values
	Table 3: Estimated preference parameters. Standard errors are in parentheses below estimated parameters. NA refers to parameters
	7.2 Medicaid recipiency
	Figure 6: Medicaid recipiency by cohort and PI quintile: data (solid lines) and model (dashed lines).
	7.3 Net worth profiles 
	Figure 7: Median net worth by cohort and PI quintile: data (solid lines) and model (dashed lines).
	7.4 Medical expenses
	Figure 8: Median out-of-pocket medical expenses by cohort and PI quintile: data (solid lines) and model (dashed lines).
	Figure 9: Ninetieth percentile of out-of-pocket medical expenses by cohort and PI quintile: data (solid lines)and model (dashed lines).  
	Figure 10: Cumulative distribution function of out-of-pocket medical expenses: data (solid line) and model (lighter line). 
	Figure 11: Average medical expenses by age and permanent income. Panel a: paid out-of-pocket. Panel b: paid out-of-pocket or by Medicaid. 
	Figure 12: Average medical expenses by age and permanent income. Panel a: paid by insurers. Panel b: total. 
	7.5 Utility floor, preference shocks, and implied insurance system
	Figure 13: Medicaid. Panel a: fraction receiving Medicaid. Panel b: average Medicaidtransfers.
	8 The Distribution of Medicaid Insurance Benefits
	8.1 The distribution of Medicaid payments
	Table 4: Medicaid payments at age 74.
	Table 5: Consumption of medical goods and services at age 74.
	Table 6: Out-of-Pocket costs for medical goods and services at age 74.
	8.2 Compensating differentials
	Table 7: Consumption at age 74.
	Table 8: Present discounted value of Medicaid payments at age 74 for different levels of the utility floor
	Figure 14: Compensating differentials by assets and permanent income quintile.
	9 Conclusion
	Figure 15: Net worth by age and permanent income. Dashed line: benchmark, solid line:experiment with less generous utility floor.
	References
	Appendix A: Moment conditions and asymptotic distribution of parameter estimates
	Appendix B: Demographic Transition Probabilities in the HRS/AHEAD




