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Abstract 

This paper studies the quantitative importance of precautionary wealth accumulation 
relative to life—cycle saving for retirement. Section 1 examines panel data on earnings 
from the PSID. Using a bivariate normal model of random effects, we find that second— 
period—of—life earnings are strongly positively correlated with initial earnings but have 
a higher variance. Section 2 studies the consequences for life—cycle saving. Households 
know their youthful earning power as they enter the labor market, but only in midlife do 
they learn their actual second—period earning ability. For plausible calibrations, 
precautionary saving only adds 5—6% to aggregative life—cycle wealth accumulation. 
Nevertheless, we find that, given borrowing constraints on households’ behavior, the 
variety of earning profiles that our bivariate normal model generates itself stimulates 
more than twice as much extra wealth accumulation as precautionary saving. 
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Precautionary Saving over the Life Cycle

John Laitner

Two principal models that economists use to describe private saving behavior are the
life—cycle, or “overlapping generations,” model and the dynastic model. In each, an agent’s
current flow of utility depends upon his flow of consumption (and leisure) and the flow
utility function is concave. The concavity makes the agent desire a smooth, as opposed
to choppy, time path of consumption. The original life—cycle model stressed the natural
unevenness of lifetime earnings – rising in youth and middle age, and disappearing at
retirement. In that context, households should save in earning years and dissave in retire-
ment to attain an even lifetime profile of consumption. Alternative life—cycle formulations
incorporate year—to—year fluctuations in earnings due to erratic promotions, business cy-
cles, etc. Households might want to save extra relatively early in life to accumulate a stock
of wealth, which we might call a “precautionary” stock, as a reserve to buffer such high
frequency fluctuations. In the second basic model, the dynastic model, a household with
exceptionally high earnings may accumulate wealth to build an estate, through which it
can share its good luck with its descendants. We can think of buffer—stock behavior as
saving predicated on a very short time horizon, traditional life—cycle wealth accumulation
(and decumulation) as behavior predicated on the time horizon of one life span, and es-
tate building as behavior based upon an intergenerational time horizon. Laitner [2001,
2002, 2003] argues that the latter may be especially important in explaining the substan-
tial empirical wealth disparities among U.S. households; Barro [1974] shows that dynastic
behavior may enormously influence policy implications.1 The purpose of the present paper
is to formulate, and to calibrate, a life—cycle model with both saving for retirement and
precautionary saving – with the ultimate goal of developing a well—specified component
for a compound model with both life—cycle and dynastic behavior.

There are at least two types of lifetime uncertainty of potential interest. One includes
aggregative shocks from, for example, business cycle fluctuations. Aiyagari [1994] argues
that these may not have a quantitatively large effect on household saving – though results
tend to be very sensitive to the way one models the stochastic process of the shocks.2 A
second arises from the heterogeneity of earnings among individual households. The latter
is the focus of the present paper. There is a distribution of starting wages and salaries,
and we assume that each household quickly realizes its initial position; nevertheless, the
distribution tends to fan out with age and relative positions change. We assume that a
young household is unsure about its eventual luck, and the effect on saving of uncertainty
about the evolution of one’s earnings later in life is this paper’s topic.

This paper finds, strictly speaking, a relatively small role for precautionary saving.
In contrast, it finds that differences in lifetime earning profiles across individuals can
affect aggregative saving to a quantitatively important degree regardless of whether the

1 See, for instance, the discussion in Laitner [2001]. See also Altig et al. [2001], Gokhale
et al. [2001], and others.
2 See also, for instance, Zeldes [1989], Caballero [1990], and Deaton [1991]. Many such

papers comment on the substantial role of idiosyncratic heterogeneity – see below.
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differences are predictable or not. In other words, in this paper uncertainty per se turns
out not to be as important as heterogeneity of lifetime earning profile shapes. Analyses
that overlook uncertainty tend to assume uniformity of earning profiles, and we find that
it is the latter assumption that may generate misleading results.

1. Lifetime Earnings

We begin by examining lifetime earnings profiles for men from the Panel Study of
Income Dynamics (PSID).

Data. Table 1 presents information on the subsamples that we employ. We use male
earnings histories from 1967—1994. We separate the sample into four education categories:
less than high school, high school, some college, and college or more. We do not use the
so—called poverty sample in the PSID. We use only ages less than or equal to 60 and greater
than or equal to the larger of years of education plus 6 and 16.

Table 1 shows that our panel is unbalanced: for a minority of men, we have 28
consecutive earnings figures; for most, we have far fewer. The total number of observations
in every education category is, however, over 8,000. Although in 1983 PSID earnings were
top coded at $99,999, the data shows this is a relatively minor issue. Some men work part
time. When hours were less than 1750 hours per year, we compute the wage rate and adjust
earnings upward to 1750 hours. (Figures above 1750 hours/year receive no correction.)
For men who desired part time work, this adjustment seems appropriate to make their
earnings reflect their potential. Similarly for the case of insured health leaves. In the case
of involuntary and uninsured unemployment, on the other hand, the adjustment causes us
to understate earnings uncertainty, making our results below conservative. Table 1 shows
that the adjustment of hours affects more than 1 in 7 earnings figures. With the same
reasoning, we drop observations with 0 hours. Table 1 records drops preceded and followed
by positive hours (e.g., a zero in 1984 for a man who had positive hours in 1983 and 1985
is recorded). About one tenth of the potential observations were zero.

Ordinary Least Squares. Economists have long used so—called “earnings dynamics” mod-
els to characterize the life course of an individual’s earnings (e.g., Lillard and Weiss [1979]
and Abowd and Card [1989]). Such a model usually has the following form: we regress the
logarithm of an individual’s earnings at each age on a (low order) polynomial of age and a
system of yearly dummy variables. The polynomial should show earnings rising with age
until the mid forties to mid fifties, and then beginning a slow decline; the time dummies
should show the influence of technological progress, with earnings generally rising over
time, and business cycle peaks and troughs, with earnings growth flat or even negative
in the troughs. The idea of the age—dependent part of the earnings dynamics model is
that on—the—job training and experiential human capital accumulation should increase a
worker’s earning ability through middle age, but subsequently depreciation of skills may
well predominate.

Table A1 in the Appendix to this paper presents OLS regression results for the simple
(but standard) model

2



ln(yit) = α0 + α1 · zit + α2 · [zit]2/100 +
19943
j=1967

βj ·Dj(t) + 6it , (1)

where yit is the earnings of male i at time t, zit is the male’s age at time t, Dj(t) is a
dummy variable which is 1 if t = j and 0 otherwise, and 6it is a regression error (capturing
measurement error in ln(yit) and omitted explanatory variables orthogonal to the included
regressors). We omit a dummy for 1984, so that remaining betas measure the effect of time
relative to 1984.

The estimates in Table A1 conform with our anticipations. Omitting the influence
of technological progress, earnings peak in the age range 45—49.3 If we compare peak
earnings with earnings at say age 25, the ratio is about 1.5 for the lowest education group
and about 2.2 for the highest. Looking at the table for all education groups together,
the time dummies show strong annual growth from technological change from 1967—1978;
after that there is very little growth, and business cycle dips induce declines in the early
1980s and early 1990s. The slow growth in the second half of the period is consistent with
the general slowdown in the rate of technological progress after the early 1970s, which
economists have frequently noted.4

Table 2 is particularly important for this paper’s model: for individual ages, Table 2
presents weighted—average estimates of the variance of the residual from equation (1). The
table omits the youngest workers – for whom labor market participation is especially
erratic. Each column except the first then reveals a clear pattern: the variance of the
regression error rises with age. The increase for the first column is miniscule. For column 2,
however, between ages 25—39 and 46—60 the increase is 25%; for column 3, it is 62%; for
college graduates, it is 65%; and for the sample as a whole, it is 44%.

Maximum Likelihood. As explained in the introduction, we assume that workers under-
stand their initial earning differences but that young workers are unsure about how they
will fair relative to their peers as the differences reshuffle and grow with age. The purpose
of this paper is to study the consequences for saving behavior of the resulting uncertainty
for individual households. The key to our analysis is the variance pattern in Table 2. To
proceed, we examine the error term of equation (1) in detail.

A common approach in the earnings dynamics literature is to specify the regression
error as the sum of two components:

6it = µi + ηit , (2)

with µ an individual—specific characteristic, and η an independent, idiosyncratic error.
This assumes that individuals have differences in life—long earning ability, which the life—
long component of their regression error, µi, captures. Typically, one would assume that

3 Positive technological progress will increase the age at which earnings actually peak
– the faster the technological change, the later the peak.
4 It is also true that the PSID data on earnings corresponds to take home pay – it

omits “benefits” such as employer contributions to social security, to private pensions, and
for medical insurance. To the extent that benefits have risen relative to wages and salaries
in the recent past, the coefficients on the dummy variables are biased downward.
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µ and η are independently normally distributed. This is the “random effects” model of 6.
The random effects model by itself, however, will not explain the pattern of rising variances
in Table 2.

Although one might guess that cross—sectional differences in earnings vary from year
to year, that presumably does not lead to the variance pattern of Table 2. Earnings will
tend to be high in general in years of business—cycle prosperity, and low in troughs, but
our time dummies should capture such phenomena. Although conceivably cross—sectional
variation is higher in some years than others, the PSID attempts to represent the entire
population at each date: as the original respondents (from 1968) aged and died, the PSID
replaced them with young households. Thus, the fraction of, say, 50 year olds in the sample
should match the U.S. population as a whole in every year. Sample weights should correct
for minor problems of representativeness, and all of our regressions use weights. Since the
sample then represents all ages in every year, year to year cycles should not affect the
pattern of variances by age in Table 2.

One possible hypothesis, say, H0, that could explain the pattern in Table 2 is that older
workers endure larger idiosyncratic shocks. In other words, perhaps the variance of ηit in
(2) rises with age. For example, upward steps in earnings typically follow promotions, and
for young workers promotions may be frequent and small, but for older workers promotions
may be infrequent and sizable. Letting zit be the age of worker i at time t, a simple
specification would then be

6it =

F
µi + ηit, for zit ≤ 45,
µi + η∗it, for zit > 45,

(3)

where age 45 is the middle of a working life, µi and ηit and η∗it are independent normal
random variables with zero mean, and the variance of η∗ is larger than the variance of η.

A second hypothesis, say, H00, is that µi changes over a worker’s life span. One
story could be as follows. In youth, a worker does “technical” tasks – assembly line jobs,
assigned research work, etc. In the second half of a career, a worker may rise to a managerial
position in which he is directing younger workers. If a worker does assume managerial
responsibilities, his earnings trajectory takes an upward step; if not, his earnings may
be level or even erode as his technical skills become obsolete. Another story could be
that some workers experience health problems in old age, and their earnings suffer, while
others do not. A third possibility is that in youth, a worker trains for a career involving
a particular technology or product; over time, the technology or product may grow in
importance and the worker may prosper, or a new technology or product may arrive and
make the worker’s training obsolete. A simple formulation is

6it =

F
µi + ηit, for zit ≤ 45,
µ∗i + ηit, for zit > 45,

(4)

where µ and µ∗ and η are normal random variables with zero means; η is independent of
the other two; and µ and µ∗ are distributed bivariate normal with the marginal distribution
of the latter having a higher variance. We might expect the correlation coefficient for µ
and µ∗ to be positive but less than one.
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The procedure that we employ nests (3)—(4): we assume a components of error for-
mulation

6it =

F
µi + ηit, for zit ≤ 45,
µ∗i + η∗it, for zit > 45,

(5)

where µ and µ∗ and η and η∗ are normal random variables with zero means; η and η∗ are
each independent of the other three, and have variance ση and ση∗, respectively; and µ and
µ∗ are distributed bivariate normal with marginal variances σµ and σµ∗ and correlation
ρ ∈ (−1, 1).

Consider a household with index i. Let the vector θ include α and β from (1) and the
variances and correlation from (5). Letting xit be the vector of covariates for household i
at time t, use the notation

eit = e(yit, xit, θ) ≡ ln(yit)− α0 − α1 · zit − α2 · [zit]2/100−
19943
j=1967

βj ·Dj(t) . (6)

Let times before the household is age 45 be indexed with s; let the times after age 45
be indexed with t. Let the normal density function for a variable z with mean 0 and
standard deviation σ be φ(z |σ). Then the likelihood function for the household if none of
its observations are top coded is

Li(θ) ≡
8 ∞
−∞

8 ∞
−∞

φ(µi, µ
∗
i |σµ,σµ∗ , ρ)·

�
s

φ(eis−µi |ση)·
�
t

φ(eit−µ∗i |ση∗) dµi dµ∗i . (7)

The likelihood function for top coded households is only slightly different. Top coding
can only occur in 1983. Suppose household i is top coded at age s̄ < 45. Then the
likelihood function for the household’s observations is

L̄i(θ) ≡
8 ∞
ei s̄

8 ∞
−∞

8 ∞
−∞

φ(µi, µ
∗
i |σµ,σµ∗ , ρ) · φ(e− µi |ση) ·

�
s

φ(eis − µi |ση)·�
t

φ(eit − µ∗i |ση∗) dµi dµ∗i de . (8)

Similarly if the top coding occurs after age 45.
If I is the set of non-top coded households and Ī the set of top coded households, then

maximum likelihood estimation determines θ from

θ = argmax
θ0

�
i∈I

Li(θ0) ·
�
ī∈Ī

L̄ī(θ0) . (9)

(Table 1 shows the number of top coded households is small.)
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Table 2A in the Appendix exhibits maximum likelihood estimates of α and β. Rather
than force the changes to take place instantly, we exclude observations for ages 3 years
before and after age 45. The results resemble those from OLS in Table A1. This is not
surprising: other than top coded observations, OLS should provide consistent estimates.

Table 3 presents our estimates of the precisions hη = 1/ση, hη∗ = 1/ση∗, hµ = 1/σµ,
and hµ∗ = 1/σµ∗ and of the correlation coefficient ρ. Under H0, since ση < ση∗, we would
have

hη > hη∗ but hµ ≈ hµ∗ ;
under H00, since σµ < σµ∗, we would have

hη ≈ hη∗ but hµ > hµ∗ .
Table 3 strongly favors H00. In every column, hµ > hµ∗: in columns 1—5, respectively,

hµ∗ is 82% as large as hµ, 76%, 77%, 48%, and 68% as large. In most cases hη and hη∗
are almost the same. The one anomaly is column 1, where hη∗ is 18% larger than hη –
and even then the inequality is in the opposite direction from what H0 predicts.

The next section assumes H00 and turns to a model of household saving.

2. Life Cycle Saving

This section lays out a traditional life cycle model emphasizing saving for retirement.
Then it adds the precautionary saving that is this paper’s focus.

Saving for Retirement. We begin with a traditional life—cycle model emphasizing saving
in youth and middle age and dissaving in old age (e.g., Modigliani [1986]).

Let the number of “equivalent adults” per household be ns. Let a household’s head
constitute 1 “equivalent adult.” For a married household, let the spouse constitute ξS

additional equivalent adults. Although ξS might be 1, it could also be substantially less if
there are scale economies to household size. If at age s the household head has a spouse, set
nSs = 1; otherwise, set n

S
s = 0. Similarly, let n

C
s be the number of children in a household

when the head’s age is s, and let ξC be the adult equivalency of each child. A recent
literature (e.g., Banks et al. [1998], Bernheim et al. [2001], Hurd and Rohwedder [2003])
identifies an empirical drop in consumption at retirement; Laitner [2003] associates this
with the increase in leisure time. Let ξR be the drop at retirement. Then if R is the age
of retirement, let

ns =

F
1 + ξS · nSs + ξC · nCs , if s < R,
ξR · (1 + ξS · nSs ) , if s ≥ R. . (10)

We follow Tobin [1967], who suggests a utility—flow model

ns · u( cs
ns
) .

The idea is that a single—member household with consumption c1 and the same household
at a different age with n equivalent adults and consumption cn achieve the same per capita

6



current utility flow when cn = n · c1, and that a household weights u(.) with n because the
household values the per capita utility flows of all members equally.

This paper’s life—cycle maximization model is then as follows: for household i, born
at t, and retiring at age R, we solve for consumption cits at each age s

max
cits

8 T

0

e−δ·s · qs · nis · u
Dcits
nis

i
ds (11)

subject to:
∂aits
∂s

= rs · aits + ψis · w · (1− τ) · eg·(t+s) + SSits − cits ,

ait0 = 0 = aitT ,

aits ≥ 0 all s ,
where δ is the subjective discount rate; equivalent adults, nis, come from (10); and, aits
is the household’s net worth (e.g., net asset) position at age s. We assume that financial
institutions do not allow borrowing without collateral; hence, the household’s net worth
can never be negative. As is common in the literature, we assume u(.) is isoelastic:5

u(x) =

F
xγ

γ , with γ < 1 and γ W= 0;
ln(x) , otherwise.

(12)

The maximal life span is T years.
The household supplies ψis “effective hours” in the labor market per hour of work time;

thus, if w · eg·(t+s), where g > 0 is the rate of labor augmenting technological progress, is
the economy wide average wage rate, the household’s pretax earnings are ψis · w · eg·(t+s)
per hour at age s. We assume a proportional income tax with rate τ . Life spans are
uncertain. Let qs be the probability of surviving through age s. To simplify, we average
male and female survival rates and assume a husband and wife die together. Aftertax
earnings at age s are

ψis · w · eg·(t+s) · (1− τ) .
We assume that markets offer actuarially fair annuities and that all households take

advantage of them. The underlying interest rate is r. At age s, an annuity pays

r − q̇s
qs
.

This exceeds r since qs is a declining function of s. The aftertax rate of return on savings
is

rs ≡
D
r − q̇s

qs

i · (1− τ) . (13)

5 This is the only additively separable case with homotheticity. The latter is virtually
essential if we are to allow technological progress in a model economy over time.
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Economists have long realized that Social Security benefits reduce households’ needs
for life—cycle wealth. The term SSits in the budget constraint of (11) reflects Social Security
taxes in youth and benefits in old age. The Social Security tax is proportional up to a cap;
benefits vary with lifetime earnings and a progressive structure of brackets. This paper
assumes that over time the cap and the benefit brackets move proportionately to the level
eg·t of technology, which preserves the homothetic structure of (11).

Precautionary Saving. This subsection modifies the framework above to incorporate un-
certainty about lifetime earnings. Although in our framework markets provide securities
(i.e., annuities) that protect a household against mortality risk, we assume that prob-
lems stemming from moral hazard preclude market insurance against earnings uncertainty.
Households respond with self—insurance efforts. We call the additional wealth that self—
insurance stimulates “precautionary saving.”

The earnings dynamics analysis of Section 1 provides the template. Each household’s
age—trajectory of “effective hours” is a quadratic function of age:

Q(age) ≡ /α0 +/α1 · age +/α2 · age2
100

, (14)

with �αi as estimated – see Table A2 in the Appendix. Each household is born with
a different earning ability – which Section 1’s individual effect µ captures. We assume
that a household discovers its µ as it begins work. Nevertheless, in midlife the house-
hold’s individual effect changes to µ∗, and we assume that though the household knows
the distribution from which µ∗ will emerge, it only learns its actual realization from the
distribution at age 45. Section 1 posits a bivariate normal distribution for (µ, µ∗) pairs in
the population as a whole, with zero means and parameters σµ, σµ∗, and ρ. For consistency
with the regression model, we assume that condition on its beginning individual effect µ,
a young household perceives that it faces a normal distribution for µ∗ with6

µ∗ ∼ NDρ · (σµ∗/σµ) · µ, σ2µ∗ · (1− ρ2)i . (15)

If Q(.) is as in (14) and household i is age s, and if M is midlife (M = 45 in this paper),
we then have

ψis ≡ ψ(µi, µ
∗
i , s) =

µi ·Q(s) , if s ≤M ,
µ∗i ·Q(s) , if M < s ≤ R,
0 , if s > R,

(16)

where R is the age of retirement. This paper treats R as exogenously given.7 From this
point forward, we ignore the error components η and η∗ from our likelihood function: think
of them as characterizing measurement error. Section 1 provides a possible story for the
change from µi to µ

∗
i in midlife.

6 The first argument in N(., .) below is the mean, and the second is the variance. Note
that the mean in this case is the mean conditional on individual effect µ in the first period
of life; the unconditional mean, as stated, is zero by assumption.
7 In contrast, see, for example, Laitner [2003].
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Aggregate Household Life—Cycle Net Worth. Let At be aggregate household life—cycle
net worth at time t if households face lifetime earning uncertainty, and let Act be the
same in the certainty case.

Although our focus is precautionary saving, we develop a control, or comparison case
as follows. Suppose household i, born at t, learns its µi and its µ

∗
i at its inception. Such

households have no lifetime uncertainty; hence, they have no need for precautionary wealth
accumulation. In this case, given (16), we can solve (11).8 Call the resulting net worth at
age s for a household born at time s and having earning abilities µ and µ∗

ac(µ, µ∗, t, s) .

Let Section 1’s bivariate normal density for (µ, µ∗) be

φ(µ, µ∗ |σµ,σµ∗ , ρ) ,
recalling that the population means for µ and for µ∗ are zero. Then average household
assets at time t are8 T

0

8 ∞
−∞

8 ∞
−∞

φ(µ, µ∗ |σµ,σµ∗, ρ) · qs · ac(µ, µ∗, t− s, s) dµ dµ∗ ds . (17)

Similarly, average gross—of—tax earnings are

w · eg·t ·
8 R

0

8 ∞
−∞

8 ∞
−∞

φ(µ, µ∗ |σµ,σµ∗, ρ) · qs · ψ(µ, µ∗, s) · eg·s dµ dµ∗ ds . (18)

Call the integral in (18) E. If we multiply (17) by the population of the economy, we
have Act ; if we multiply (18) by the population, we have the economy’s gross—of—tax wage
bill. A ratio of the two is independent of the population’s absolute size. Furthermore,
an important consequence of homothetic preferences is that technological change and the
wage w each affect (17) and (18) strictly proportionately. Thus,

Act
w · eg·t · E =

Ac0
w · E , (19)

with the ratio independent of t, w, and the population.9

If there is lifetime earning uncertainty, the analysis is slightly more complicated. As
before, let M be the age at midlife. Let J(aM , µ, µ

∗, t) be second—period—of—life utility
for a household born at t, entering its second period with net worth aM , having second—
period—of—life earning ability µ∗, and having first—period ability µ. Then

8 Problem (11) is a standard optimal control problem – except for the constraint
aits ≥ 0. All of this paper’s computations employ Mariger’s [1987] algorithm for dealing
with the constraint.
9 To be more precise, the fact that ratio (19) is independent of time and w reflects

the homotheticity of preferences, our assumptions about the Social Security system, and
our assumptions that the underlying interest rate is fixed and the wage grows only with
technology. The last assumptions mean that we are studying the household sector of an
economy that has reached a so-called steady—state equilibrium.
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J(aM , µ, µ
∗, t) ≡ max

cts

8 T

M

e−δ·s · qs · ns · u
Dcts
ns

i
ds (20)

subject to:
∂ats
∂s

= rs · ats + ψ(µ, µ∗, s) · w · (1− τ) · eg·(t+s) + SS(µ, µ∗)ts − cts ,

atM = aM

atT = 0 ,

ats ≥ 0 all s ∈ [M,T ] .
(Notice that J(.) depends on µ because a household’s Social Security benefits depend on
its lifetime earnings – though ψ(µ, µ∗, s) for s ≥M does not dependent on µ.) Similarly,
let I(aM , µ, t) be first—period—of—life utility if the household has earning ability µ and ends
its first period with net worth aM . Since Social Security taxes depend only on current
earnings, we can write SS(µ, .)ts for s ≤M . Then

I(aM , µ, t) ≡ max
cts

8 M

0

e−δ·s · qs · ns · u
Dcts
ns

i
ds (21)

subject to:
∂ats
∂s

= rs · ats + ψ(µ, µ∗, s) · w · (1− τ) · eg·(t+s) + SS(µ, .)ts − cts ,

at0 = 0

atM = aM ,

ats ≥ 0 all s ∈ [0,M ] .
For a given µ and t, we can solve for aM from

aM = aM (µ, t) = argmax
a
{I(a, µ, t) +Eµ∗ |µ

J
J(a, µ, µ∗, t)

o} , (22)

where the density for µ∗ conditional on µ comes from (15).
For the model with uncertainty, our procedure is as follows: determine aM from (22);

then determine assets a(µ, µ∗, t− s, s) from (20)—(21); and, then substitute the latter into
(17) in place of ac(.). Line (18) remains as before. As in (19), our isoelastic preferences
enable us to derive

At
w · eg·t · E =

A0
w · E , (23)

with E as above, and with the last ratio independent of time, w, and the economy’s
population.
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3. Simulations

We want to compare (19) and (23) to find the quantitative importance of precautionary
saving. Laitner [2001] suggests the empirical ratio for 1995 of private net worth to gross—
of—tax labor earnings for the U.S. was about 4.61.10 Because this paper’s model omits
estate building, we do not necessarily expect our simulations to produce ratios as high as
the empirical one.

Calibration. Although early life—cycle analyses calibrated their parameters in part on
the basis of author introspection (e.g., Tobin [1967]), this paper relies heavily on recent
estimates from empirical studies.

The child, spouse, and retirement adult—equivalency weights in (10) are potentially
important determinants of life—cycle saving – high relative weights for children, for exam-
ple, front load household consumption and can drastically reduce total life—cycle wealth
accumulation (e.g., Auerbach and Kotlikoff [1987, ch.11]). Many authors set ξC in the
range of .30—.50 and ξS equal to 1.00 (e.g., Mariger [1987]). Using U.S. Consumer Expen-
diture Survey data from 1984—2000, Laitner [2003] finds support for values ξS ≤ .50 and
ξC ≤ .25. These presumably reflect returns to scale for larger households. In fact, ξS = .50
would be consistent with U.S. Social Security benefits to couples, and a low ξC perhaps
implies that parents reduce their own consumption in years in which they have children
at home. For our base case, we set ξS = .50 and ξC = .25. Banks et al. [1998], Bernheim
et al. [2001], and Laitner [2003] find a consumption reduction of 10—20% or more upon
retirement. For our base case, we set ξR = .85.

Typical values of the household subjective discount rate δ are .00—.02, reflecting house-
holds’ impatience to consumer sooner rather than later. Laitner [2003] finds that a house-
hold’s consumption per capita seems to grow on average about 2%/year with age. With
this rate of growth, a household’s consumption is roughly 2.2 times as high at age 65 as at
age 25. Our simulations assume such a growth rate, and derive the δ in each case consistent
with it.

The isoelastic parameter γ determines households’ degree of risk aversion: if γ is near
1, utility is almost linear and households are quite comfortable with substantial year—to—
year consumption unevenness; if γ is small, very negative in particular, utility is sharply
concave and households are very averse to consumption fluctuations, hence they are very
risk averse. Estimates in the literature range from γ = 0 to -4. For instance, Auerbach
and Kotlikoff [1987] use γ = −3, Cooley and Prescott [1995] use 0, Rust and Phelan [1997]
estimate -.072.11 On the basis of the size of the consumption decline at retirement, Lait-
ner [2003] estimates γ = −1 to -1.5.

We use a standard mortality table for 1995, averaging mortality rates for men and

10 The figure is based mainly on U.S. Flow of Funds data. Private net worth does include
the capitalized value of private pension rights, but it does not include Social Security
benefits (which receive separate treatment in our analysis). The denominator of the ratio
is GDP times labor’s share. Labor’s share is .7015 (which we determine from wages and
salaries as a share of corporate output).
11 See also Barsky et al. [1997].

11



women. The average life expectancy is 77 years. For simplicity, we assume that a husband
and wife die together.

For earnings, we use our estimates for the whole PSID sample of αi from Table A2 in
the Appendix. Our base—case estimates of hµ, hµ∗, and ρ are described in Section 1 and
presented in column 5 of Table 3.

We use the U.S. Social Security System 1995 proportional tax rate, .1052, on earnings;
the System’s earnings cap ($61,200/year for 1995); and its 1995 benefit formula. U.S.
National Income and Product Account government spending (Federal and state and local)
on goods and services suggests τ = .231. Based on the slow rate of technological progress
after 1970, we set g = .01.

For our base case, we set r = .05. This is derived as follows. The ratio of ratio of
corporate wages and salaries to corporate output is about .2985.12 Multiplying this times
GDP and subtracting total depreciation, we have return to capital net of depreciation.
We further subtract the cost to households of financial services (e.g., brokerage fees and
financial counseling, service charges of financial intermediaries, and handling expenses
for life insurance and pension plans).13 Then we divide by the sum of the current—cost
nonresidential private capital stock, the residential private capital stock, the government
fixed capital stock, and the stock of business inventories. The ratio is the average rate
of return on capital; under marginal cost pricing and constant returns to scale, this is
also the marginal return. The average return 1951—2001 is .055; the 1995 return is .051.
Our net—of—tax return for households is r · (1 − τ). Other calculations are, of course,
possible. If we exclude residential housing services from GDP, exclude depreciation on
residential housing from total depreciation, and omit the stock of residential housing from
our denominator above, the average (gross of tax) rate of return is .081, and the 1995 value
is .076. Conversely, Laitner and Stolyarov [2003] argue that intangible capital may be 50
percent as large as the nonresidential capital stock, and with such a correction the average
rate of return (reinstating residential capital) falls to .050 and the 1995 rate to .046.

There is no need to set w – homotheticity makes the numerators of (19) and (23)
linear in w just as the denominator is, so the wage cancels out of the ratio in each case.

Table 4 summarizes our base—case parameter choices.

Simulations. Table 5 presents three sets of simulations. The first, see row 1, generates ag-
gregative ratios A/(w ·E) for our specification with uncertainty over earnings in the second
half of life. A household resolves the uncertainty at age 45 – see (20)—(22). The second—
row specification eliminates uncertainty, fixing, past age 45, mean earnings conditional on
initial earnings. Economic theory shows that row 2 ratios will be smaller than row 1. The
third row of Table 5 follows all possible first and second period of life outcomes, with a
household knowing its µ and µ∗ as it begins work – see (19). We take row 1 minus row 3
as our measure of precautionary wealth accumulation. (Note that there is no theoretical
reason that this measure must always be positive.)

12 All of the U.S. National Income and Product Accounts data comes from
http://www.bea.doc.go/bea/nd1.ham,
either the interactive “NIPA tables” or the interactive “fixed asset tables.”
13 See lines 87—90 of interactive NIPA Table 2.4.5. In general, these “personal business
charges” reduce the net rate of return by almost 1.5%/year.
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Table 5 presents results for values of γ between 0 and -4. As we would expect, a
lower γ, implying more curvature in the utility function u(.), leads to higher precautionary
wealth accumulation. For γ = 0, our measure of precautionary wealth, the difference
between row 1 and row 3, is slightly negative. For γ = −1, precautionary saving increases
national wealth by 5.3%; for γ = −1.5, the increase is 8.3%; for γ = −2, it is 11.1%; and,
for γ = −4, the increase is 20.5%. Since the empirical ratio A/(w · E) is about 4.61, for
γ = −1 life—cycle saving including precautionary wealth accumulation explains about 73%
of U.S. wealth. With γ = −2, the explained fraction rises to 77%; with γ = −4, it is 84%.
For comparison, Modigliani [1986] argues that the life—cycle model can account for roughly
80% of U.S. net worth.

The last row of Table 5 suggests a problem with very low values of γ: for γ less than
-1, the corresponding value of the subjective discount rate δ is negative – yet we explained
above that values δ ∈ [0, .02], reflecting some impatience on the part of households, seem
the most plausible. One possibility is that the empirical analysis yielding our base—case
calibration of consumption growth did not include households’ uncertainty about their
earnings – see, for example, Caballero [1990].

A second possibility is that slight changes in our calibrations would help. Mathemati-
cally, if ĉt is the percentage growth rate of a household’s consumption per capita over ages
in which the household’s composition is not changing and in which new information about
future earnings is not becoming available, we have14

ĉt =
rt · (1− τ)− δ

1− γ . (24)

Our base case sets ĉt = .02. For a given γ, however, we can see that δ can be larger if
rt is higher or if ĉt is lower. The lowest estimate of ĉt in Laitner [2003] is .0176. Table 6
considers .015 – a rate of growth at which a household’s consumption per capita would
rise by a factor of about 1.8 over 40 years. If we exclude residential capital (and its service
flow and depreciation), we argued above that we might set rt = .076. Table 6 considers
this as well.

For either ĉt = .015 or rt = .076, Table 6 shows that a non-negative δ emerges for γ as
low as -1.5. Precautionary saving then augments life—cycle wealth accumulation by 6—7%.
In both cases, the percent of U.S. net worth accounted for is smaller, however, than when
γ = −1 in Table 5.

A third possibility is that our utility function – although very standard in the eco-
nomics literature – is too restrictive.15

We proceed assuming that values of γ much below -1 yield implausible implications
for δ.

Returning to Table 5, the large difference between rows 2 and 3 is a surprise. Consider
the column with γ = −1. In the certainty—equivalent case, each household finishes life with
average earnings conditional on its starting earnings. Total life—cycle saving is only 58%

14 In fact, our numerical calculations assume discrete time – providing an approximation
to (24).
15 See, for example, Weil [1990].
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of empirical national net worth. In row 3, initial earnings are the same, but though there
is a distribution of second—stage—of—life earnings, each household knows its second—stage
realization as it begins adulthood.16 A household expecting a low second—period realization
will save extra in youth; a household expecting a high second—period realization will save
less. The reactions will be asymmetric, however: the liquidity constraint ats ≥ 0 puts a
restriction on the reduction in saving for a household anticipating high earnings late in
life, but there is no corresponding limitation for the increase in saving for a household
that is pessimistic about its future earnings. Row 3 generates 69—70% of empirical net
worth. Making second—period—of—life earnings uncertain until age 45 – see row 1 – only
increases life—cycle net worth to 73% of the empirical total. Although a full recognition
of the uninsurable earning uncertainty that households face is appealing from the point of
view of realism, in practice the step from row 2 to row 3 is much larger than the step from
row 3 to row 1.

Sensitivity Analysis. Table 7 considers alternative child and retirement weights. In all
cases the subjective discount rate remains as in Table 5.

Suppose γ = −1. With ξC = .50, a value consistent with Mariger [1987] and others,
the role of precautionary saving virtually disappears (uncertainty actually lowers aggrega-
tive life—cycle net worth slightly). As we would expect, higher consumption for children
substantially lowers the fraction of empirical net worth that the model can explain – from
73 percent in Table 5 to 60 percent in Table 7.

With ξC = .25 as in Table 5, changes in the fall in consumption at retirement have
little effect on the role of precautionary saving – as in Table 5, precautionary wealth
accumulation is about 5 percent of the life—cycle total. As one would expect, if the weight
on retirement consumption is higher, young households save more and aggregative life—cycle
net worth is higher. In Table 5, life—cycle saving explains 75 percent of 1995 empirical net
worth when γ = −1; in Table 7 it explains 78 percent with ξR = .90, but only 69 percent
with ξR = .80.

Table 8 summarizes our last experiment. It employs hµ, hµ∗, and ρ from column 4 (i.e.,
college graduates) in Table 3. The second—period—of—life standard deviation is noticeably
higher, and the correlation ρ lower, than for other education categories. The college
educated group makes up about one—quarter of the whole sample (by sampling weight).

Precautionary saving increases life—cycle accumulation by 7.4% in column 2, Table 8
– up from 5.3% in the same column of Table 5. Perhaps more surprising, Ac/(w·E) for the
certainty case is 12% larger than Table 5. Again, asymmetric responses to increases and
decreases of second—period earnings seem quantitatively more important to total wealth
accumulation than uncertainty about second—period—of—life earnings.

16 In row 1, at age 22 a household knows its µ and the conditional distribution for its
µ∗; the household learns its actual µ∗ at age 45. In row 2, at age 22 a household learns µ
and µ∗, with the latter equaling its conditional mean from row 1. In row 3, at age 22 a
household learns both µ and µ∗; µ∗ can take any of the values possible in row 1.
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4. Conclusion

This paper studies the quantitative importance of precautionary wealth accumula-
tion relative to life—cycle saving for retirement. The first section examines panel data on
earnings from the PSID. We find that the cross—sectional variance of earnings within a
cohort rises with age. Using a bivariate normal model of random effects, we find that
second—period—of—life earnings are strongly positively correlated with initial earnings but
indeed have a higher variance. The paper’s next section studies the consequences for life—
cycle saving. It assumes that households know their youthful earning power as they enter
the labor market but that they know only the conditional distribution of their second—
period—of—life earnings. Only in midlife do they learn their actual second—period earning
ability.

For our most plausible calibrations, precautionary saving only adds 5—6% to aggrega-
tive life—cycle wealth accumulation. Nevertheless, our earnings model emerges as quite
important: even if second—period—of—life earning changes are fully predictable from youth,
so that precautionary saving (i.e., responsiveness to uncertainty) plays no role, the vari-
ety of earning profiles that our bivariate normal model generates itself stimulates enough
extra wealth accumulation to merit careful consideration. In the presence of liquidity
constraints, predictions of rising earnings decrease youthful saving less than anticipations
of falling earnings raise it. In the end, heterogeneity of earning profiles, even without
uncertainty, tends to increase aggregative life—cycle wealth accumulation.
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Table A1. Weighted Ordinary Least Squares PSID 1967—94:
Less Than High School Education

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 8.1418 0.0907 89.7724
AGE 0.0719 0.0043 16.7510

AGE**2/100 -0.0767 0.0052 -14.7021
DUM 67 -0.0210 0.0462 -0.4544
DUM 68 0.0084 0.0475 0.1767
DUM 69 0.0333 0.0477 0.6980
DUM 70 0.0204 0.0483 0.4228
DUM 71 0.0445 0.0487 0.9156
DUM 72 0.1004 0.0490 2.0464
DUM 73 0.1500 0.0492 3.0478
DUM 74 0.1156 0.0499 2.3176
DUM 75 0.0607 0.0503 1.2062
DUM 76 0.1100 0.0506 2.1751
DUM 77 0.1400 0.0512 2.7337
DUM 78 0.1534 0.0520 2.9527
DUM 79 0.1438 0.0521 2.7599
DUM 80 0.0900 0.0525 1.7139
DUM 81 0.0756 0.0537 1.4091
DUM 82 -0.0352 0.0545 -0.6460
DUM 83 -0.0251 0.0551 -0.4559
DUM 85 -0.0248 0.0568 -0.4358
DUM 86 -0.1150 0.0569 -2.0201
DUM 87 -0.0953 0.0582 -1.6385
DUM 88 -0.0630 0.0594 -1.0593
DUM 89 -0.1400 0.0607 -2.3055
DUM 90 -0.1214 0.0625 -1.9435
DUM 91 -0.2209 0.0629 -3.5140
DUM 92 -0.0565 0.0647 -0.8732
DUM 93 -0.1080 0.0698 -1.5483
DUM 94 0.0460 0.0689 0.6674

Observations 8048
Error Mean Square .3597

R2 .0695

Addendum:

Age of maximum
earningsa 46.8940

Maximum Earnings ÷
Earnings at Age 25 1.4444

a. Age of maximum earnings omitting technological progress.



Table A1 (cont.). Weighted Ordinary Least Squares PSID 1967—94:
High School Education

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 8.2095 0.0604 135.8710
AGE 0.0807 0.0030 26.8944

AGE**2/100 -0.0859 0.0038 -22.7431
DUM 67 0.0326 0.0330 0.9867
DUM 68 0.0449 0.0338 1.3302
DUM 69 0.0760 0.0335 2.2656
DUM 70 0.0568 0.0335 1.6984
DUM 71 0.0587 0.0332 1.7675
DUM 72 0.1291 0.0329 3.9184
DUM 73 0.1512 0.0329 4.5963
DUM 74 0.0995 0.0328 3.0352
DUM 75 0.0642 0.0329 1.9498
DUM 76 0.0805 0.0330 2.4407
DUM 77 0.1081 0.0330 3.2806
DUM 78 0.1411 0.0328 4.2984
DUM 79 0.1160 0.0327 3.5511
DUM 80 0.0672 0.0328 2.0454
DUM 81 0.0323 0.0329 0.9832
DUM 82 -0.0322 0.0330 -0.9760
DUM 83 -0.0373 0.0331 -1.1275
DUM 85 -0.0153 0.0332 -0.4612
DUM 86 -0.0172 0.0332 -0.5185
DUM 87 -0.0613 0.0331 -1.8507
DUM 88 -0.0423 0.0333 -1.2680
DUM 89 -0.0653 0.0335 -1.9505
DUM 90 -0.1152 0.0338 -3.4123
DUM 91 -0.1289 0.0337 -3.8196
DUM 92 -0.0624 0.0345 -1.8098
DUM 93 0.0077 0.0350 0.2192
DUM 94 0.0101 0.0347 0.2916

Observations 15030
Error Mean Square .3121

R2 .0815

Addendum:

Age of maximum
earningsa 46.9510

Maximum Earnings ÷
Earnings at Age 25 1.5127

a. Age of maximum earnings omitting technological progress.



Table A1 (cont.). Weighted Ordinary Least Squares PSID 1967—94:
Some College Education

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 7.6807 0.0923 83.2571
AGE 0.1084 0.0047 23.2817

AGE**2/100 -0.1151 0.0059 -19.3969
DUM 67 0.0731 0.0490 1.4932
DUM 68 0.1081 0.0504 2.1460
DUM 69 0.1079 0.0494 2.1831
DUM 70 0.1139 0.0482 2.3618
DUM 71 0.0866 0.0477 1.8177
DUM 72 0.1529 0.0468 3.2679
DUM 73 0.1705 0.0464 3.6741
DUM 74 0.1672 0.0457 3.6580
DUM 75 0.1020 0.0453 2.2543
DUM 76 0.1549 0.0450 3.4418
DUM 77 0.1290 0.0447 2.8860
DUM 78 0.1462 0.0443 3.2999
DUM 79 0.1406 0.0442 3.1797
DUM 80 0.1284 0.0442 2.9071
DUM 81 0.0796 0.0442 1.8031
DUM 82 -0.0117 0.0440 -0.2663
DUM 83 -0.0090 0.0442 -0.2034
DUM 85 -0.0143 0.0438 -0.3268
DUM 86 0.0096 0.0441 0.2177
DUM 87 -0.0268 0.0442 -0.6065
DUM 88 -0.0368 0.0442 -0.8321
DUM 89 -0.0487 0.0442 -1.1033
DUM 90 -0.0611 0.0444 -1.3772
DUM 91 -0.0945 0.0443 -2.1341
DUM 92 0.0061 0.0447 0.1371
DUM 93 0.0833 0.0459 1.8142
DUM 94 -0.0071 0.0463 -0.1532

Observations 8402
Error Mean Square .3395

R2 .1204

Addendum:

Age of maximum
earningsa 47.0866

Maximum Earnings ÷
Earnings at Age 25 1.7530

a. Age of maximum earnings omitting technological progress.



Table A1 (cont.). Weighted Ordinary Least Squares PSID 1967—94:
College/more Education

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 7.3573 0.0949 77.5567
AGE 0.1335 0.0047 28.5248

AGE**2/100 -0.1370 0.0058 -23.7165
DUM 67 0.0366 0.0464 0.7879
DUM 68 0.0603 0.0460 1.3104
DUM 69 0.0725 0.0450 1.6103
DUM 70 0.0539 0.0444 1.2118
DUM 71 0.0508 0.0439 1.1577
DUM 72 0.0745 0.0435 1.7135
DUM 73 0.0578 0.0426 1.3574
DUM 74 0.0444 0.0420 1.0565
DUM 75 0.0019 0.0419 0.0443
DUM 76 0.0305 0.0417 0.7320
DUM 77 0.0652 0.0414 1.5745
DUM 78 0.0509 0.0412 1.2341
DUM 79 0.0287 0.0412 0.6960
DUM 80 0.0032 0.0410 0.0771
DUM 81 -0.0370 0.0408 -0.9088
DUM 82 -0.0447 0.0406 -1.1001
DUM 83 -0.0471 0.0406 -1.1598
DUM 85 0.0189 0.0406 0.4655
DUM 86 0.0483 0.0405 1.1939
DUM 87 0.0411 0.0405 1.0155
DUM 88 0.0030 0.0403 0.0748
DUM 89 0.0153 0.0405 0.3786
DUM 90 0.0196 0.0406 0.4832
DUM 91 -0.0304 0.0405 -0.7502
DUM 92 -0.0200 0.0409 -0.4890
DUM 93 0.1375 0.0421 3.2662
DUM 94 0.0521 0.0423 1.2320

Observations 12052
Error Mean Square .4068

R2 .1346

Addendum:

Age of maximum
earningsa 48.7223

Maximum Earnings ÷
Earnings at Age 25 2.1613

a. Age of maximum earnings omitting technological progress.



Table A1 (cont.). Weighted Ordinary Least Squares PSID 1967—94:
All Education Groups

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 7.7214 0.0430 179.6805
AGE 0.1116 0.0021 52.7909

AGE**2/100 -0.1233 0.0026 -46.8739
DUM 67 -0.0932 0.0220 -4.2419
DUM 68 -0.0525 0.0225 -2.3307
DUM 69 -0.0237 0.0224 -1.0602
DUM 70 -0.0280 0.0223 -1.2540
DUM 71 -0.0183 0.0223 -0.8212
DUM 72 0.0439 0.0221 1.9836
DUM 73 0.0683 0.0220 3.0983
DUM 74 0.0478 0.0220 2.1752
DUM 75 0.0081 0.0220 0.3670
DUM 76 0.0458 0.0220 2.0849
DUM 77 0.0722 0.0220 3.2818
DUM 78 0.0901 0.0220 4.1013
DUM 79 0.0745 0.0219 3.3959
DUM 80 0.0433 0.0220 1.9706
DUM 81 0.0137 0.0220 0.6214
DUM 82 -0.0400 0.0220 -1.8153
DUM 83 -0.0373 0.0221 -1.6862
DUM 85 -0.0023 0.0222 -0.1019
DUM 86 0.0031 0.0222 0.1397
DUM 87 -0.0156 0.0222 -0.7005
DUM 88 -0.0152 0.0223 -0.6816
DUM 89 -0.0267 0.0224 -1.1890
DUM 90 -0.0396 0.0226 -1.7521
DUM 91 -0.0740 0.0226 -3.2804
DUM 92 -0.0059 0.0229 -0.2582
DUM 93 0.0889 0.0235 3.7779
DUM 94 0.0498 0.0235 2.1175

Observations 43532
Error Mean Square .4105

R2 .0715

Addendum:

Age of maximum
earningsa 45.2511

Maximum Earnings ÷
Earnings at Age 25 1.6582

a. Age of maximum earnings omitting technological progress.



Table A2. Weighted Maximum Likelihood PSID 1967—94:
Less Than High School Education

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 8.279941 0.096553 85.7553
AGE 0.066201 0.004187 15.8112

AGE**2/100 -0.072579 0.004948 -14.6690
DUM 67 -0.007690 0.037809 -0.2034
DUM 68 0.000855 0.038217 0.0224
DUM 69 0.041521 0.037923 1.0949
DUM 70 0.016641 0.037884 0.4393
DUM 71 0.014586 0.037706 0.3868
DUM 72 0.088604 0.037620 2.3552
DUM 73 0.125054 0.036977 3.3820
DUM 74 0.101226 0.037021 2.7343
DUM 75 0.028708 0.036697 0.7823
DUM 76 0.071199 0.036390 1.9566
DUM 77 0.069135 0.036201 1.9098
DUM 78 0.118541 0.036450 3.2521
DUM 79 0.098236 0.036104 2.7209
DUM 80 0.034143 0.036306 0.9404
DUM 81 0.025908 0.036723 0.7055
DUM 82 -0.073257 0.036943 -1.9830
DUM 83 -0.066577 0.037259 -1.7869
DUM 85 -0.058271 0.038735 -1.5043
DUM 86 -0.154304 0.039222 -3.9342
DUM 87 -0.084447 0.040748 -2.0724
DUM 88 -0.032542 0.042085 -0.7732
DUM 89 -0.067380 0.043294 -1.5563
DUM 90 -0.107726 0.045134 -2.3868
DUM 91 -0.199414 0.045936 -4.3411
DUM 92 -0.064014 0.047054 -1.3604
DUM 93 -0.056603 0.051189 -1.1058
DUM 94 0.065458 0.051374 1.2741

Observations 6680
-Log(likelihood) 4193.8052

Addendum:

Age of maximum
earningsa 45.6061

Maximum Earnings ÷
Earnings at Age 25 1.3609

a. Age of maximum earnings omitting technological progress.



Table A2 (cont.). Weighted Maximum Likelihood PSID 1967—94:
High School Education

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 8.266227 0.064765 127.6346
AGE 0.074114 0.003050 24.3015

AGE**2/100 -0.076620 0.003852 -19.8916
DUM 67 0.062837 0.028903 2.1740
DUM 68 0.069526 0.028893 2.4063
DUM 69 0.102014 0.028243 3.6120
DUM 70 0.079769 0.027831 2.8662
DUM 71 0.088426 0.027269 3.2427
DUM 72 0.155841 0.026895 5.7944
DUM 73 0.169386 0.026485 6.3955
DUM 74 0.119724 0.026145 4.5792
DUM 75 0.080904 0.025907 3.1228
DUM 76 0.101325 0.025630 3.9534
DUM 77 0.127049 0.025389 5.0040
DUM 78 0.165184 0.024896 6.6348
DUM 79 0.140383 0.024553 5.7176
DUM 80 0.079933 0.024429 3.2721
DUM 81 0.037083 0.024260 1.5285
DUM 82 -0.027064 0.024263 -1.1155
DUM 83 -0.040539 0.024132 -1.6799
DUM 85 -0.004354 0.024343 -0.1788
DUM 86 -0.003415 0.024432 -0.1398
DUM 87 -0.049937 0.024609 -2.0293
DUM 88 -0.031488 0.025010 -1.2590
DUM 89 -0.058021 0.025364 -2.2875
DUM 90 -0.098311 0.025812 -3.8088
DUM 91 -0.124475 0.025981 -4.7910
DUM 92 -0.047823 0.026874 -1.7795
DUM 93 0.011274 0.027594 0.4086
DUM 94 0.014965 0.027966 0.5351

Observations 13048
-Log(likelihood) 7742.7954

Addendum:

Age of maximum
earningsa 48.3652

Maximum Earnings ÷
Earnings at Age 25 1.5194

a. Age of maximum earnings omitting technological progress.



Table A2 (cont.). Weighted Maximum Likelihood PSID 1967—94:
Some College Education

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 7.431462 0.097467 76.2456
AGE 0.122543 0.004756 25.7669

AGE**2/100 -0.134016 0.006190 -21.6507
DUM 67 0.065335 0.041389 1.5785
DUM 68 0.112989 0.041993 2.6906
DUM 69 0.092816 0.040595 2.2864
DUM 70 0.116975 0.039107 2.9911
DUM 71 0.096178 0.038230 2.5158
DUM 72 0.156968 0.037106 4.2302
DUM 73 0.175721 0.036523 4.8112
DUM 74 0.156599 0.035501 4.4112
DUM 75 0.099345 0.034537 2.8765
DUM 76 0.146510 0.033782 4.3369
DUM 77 0.108987 0.032958 3.3069
DUM 78 0.151929 0.032231 4.7138
DUM 79 0.133734 0.031810 4.2041
DUM 80 0.120133 0.031566 3.8058
DUM 81 0.045373 0.031392 1.4454
DUM 82 -0.032855 0.031136 -1.0552
DUM 83 -0.013388 0.031454 -0.4256
DUM 85 -0.025243 0.031135 -0.8108
DUM 86 -0.011238 0.031401 -0.3579
DUM 87 -0.036138 0.031769 -1.1375
DUM 88 -0.045722 0.032189 -1.4204
DUM 89 -0.071995 0.032765 -2.1973
DUM 90 -0.088465 0.033623 -2.6311
DUM 91 -0.090339 0.034360 -2.6292
DUM 92 -0.042244 0.035487 -1.1904
DUM 93 0.052715 0.036875 1.4296
DUM 94 0.032529 0.037858 0.8592

Observations 7288
-Log(likelihood) 4286.6292

Addendum:

Age of maximum
earningsa 45.7197

Maximum Earnings ÷
Earnings at Age 25 1.7777

a. Age of maximum earnings omitting technological progress.



Table A2 (cont.). Weighted Maximum Likelihood PSID 1967—94:
College/more Education

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 6.973176 0.092855 75.0972
AGE 0.154507 0.004376 35.3092

AGE**2/100 -0.165338 0.005729 -28.8596
DUM 67 0.044327 0.039269 1.1288
DUM 68 0.084895 0.038292 2.2170
DUM 69 0.097997 0.037075 2.6432
DUM 70 0.100493 0.036134 2.7811
DUM 71 0.076964 0.035095 2.1930
DUM 72 0.095185 0.034172 2.7855
DUM 73 0.085333 0.032917 2.5924
DUM 74 0.072009 0.031862 2.2600
DUM 75 0.021892 0.031270 0.7001
DUM 76 0.045858 0.030509 1.5031
DUM 77 0.057084 0.029784 1.9166
DUM 78 0.052023 0.029156 1.7843
DUM 79 0.033307 0.028818 1.1558
DUM 80 0.018452 0.028327 0.6514
DUM 81 -0.031345 0.027743 -1.1299
DUM 82 -0.049523 0.027355 -1.8104
DUM 83 -0.051585 0.027198 -1.8966
DUM 85 0.007380 0.027244 0.2709
DUM 86 0.046630 0.027381 1.7030
DUM 87 0.029964 0.027658 1.0834
DUM 88 0.011126 0.028157 0.3952
DUM 89 0.014515 0.028916 0.5020
DUM 90 0.019387 0.029682 0.6532
DUM 91 0.013864 0.030547 0.4539
DUM 92 0.011311 0.031695 0.3569
DUM 93 0.161604 0.033437 4.8331
DUM 94 0.088158 0.034594 2.5484

Observations 10231
-Log(likelihood) 6589.3093

Addendum:

Age of maximum
earningsa 46.7246

Maximum Earnings ÷
Earnings at Age 25 2.1822

a. Age of maximum earnings omitting technological progress.



Table A2 (cont.). Weighted Maximum Likelihood PSID 1967—94:
All Education Groups

Variable Coefficient Standard T-Statistic
Estimate Error

CONSTANT 7.903786 0.042979 183.9001
AGE 0.099501 0.001965 50.6303

AGE**2/100 -0.109248 0.002461 -44.4001
DUM 67 -0.026447 0.018027 -1.4671
DUM 68 -0.000070 0.018042 -0.0039
DUM 69 0.024524 0.017640 1.3902
DUM 70 0.019041 0.017343 1.0979
DUM 71 0.022134 0.017006 1.3016
DUM 72 0.076102 0.016713 4.5534
DUM 73 0.091683 0.016352 5.6067
DUM 74 0.065794 0.016056 4.0978
DUM 75 0.020552 0.015811 1.2999
DUM 76 0.057397 0.015549 3.6913
DUM 77 0.067513 0.015297 4.4135
DUM 78 0.098813 0.015060 6.5615
DUM 79 0.084902 0.014864 5.7119
DUM 80 0.050613 0.014757 3.4297
DUM 81 0.007465 0.014641 0.5098
DUM 82 -0.045980 0.014566 -3.1566
DUM 83 -0.039966 0.014559 -2.7452
DUM 85 0.001325 0.014645 0.0905
DUM 86 0.011166 0.014737 0.7577
DUM 87 -0.002808 0.014917 -0.1883
DUM 88 0.004032 0.015177 0.2657
DUM 89 -0.012602 0.015486 -0.8137
DUM 90 -0.029247 0.015867 -1.8432
DUM 91 -0.053140 0.016153 -3.2899
DUM 92 0.004083 0.016713 0.2443
DUM 93 0.096477 0.017436 5.5333
DUM 94 0.081996 0.017805 4.6051

Observations 37247
-Log(likelihood) 24013.7078

Addendum:

Age of maximum
earningsa 45.5391

Maximum Earnings ÷
Earnings at Age 25 1.5854

a. Age of maximum earnings omitting technological progress.
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Table 1. Panel Study of Income Dynamics Sample 1967—1994a

Panel less high some college all
Length: than school college or

HS more

1—5 329 278 103 108 818
6—10 161 214 104 99 578
11—15 114 184 87 129 514
16—20 99 165 95 130 489
21—25 63 175 102 167 507
26—28 47 121 79 114 361
Total
House—
holds: 813 1137 570 747 3267
Total
Obs. 8,048 15,030 8,402 12,052 43,532

Obs. with
Censured
Earnings 1 4 4 59 68
Obs. with
Adjusted
Hours:b 1,594 2,155 1,164 1,609 6,522
Obs.

Dropped
Zero Hrs: 98 122 107 117 444
Average
Earningsc $19,264 $23,954 $27,076 $38,723 $27,778

a. Men only; no poverty sample; ages max{education+ 6, 16} to 60.
b. Work hours adjusted upward to minimum 1750 hours/year.
c. Arithmetic average; 1984 dollars; NIPA consumption deflator.



Table 2. Estimated Variance of Residual from Weighted OLS:

PSID Sample 1967—1994a

Age less high some college all
than school college or
HS more

25 0.311984 0.398072 0.212237 0.300392 0.329970
26 0.262474 0.354262 0.254899 0.264066 0.313142
27 0.260435 0.210086 0.290596 0.258597 0.266634
28 0.395252 0.194260 0.281459 0.245593 0.282218
29 0.260636 0.207678 0.217061 0.315352 0.277497
30 0.365447 0.266462 0.341118 0.279861 0.335799
31 0.431972 0.290941 0.267845 0.260505 0.327952
32 0.215023 0.293851 0.277570 0.274925 0.311889
33 0.274406 0.324884 0.271092 0.288077 0.332506
34 0.385872 0.248387 0.290102 0.295364 0.346200
35 0.379533 0.279906 0.286025 0.393355 0.388124
36 0.400243 0.269780 0.335601 0.305611 0.373906
37 0.446240 0.243054 0.250060 0.341668 0.369742
38 0.446234 0.340350 0.286133 0.386692 0.416816
39 0.295150 0.318533 0.254221 0.534404 0.434403
40 0.267611 0.292404 0.299539 0.395925 0.387590
41 0.306671 0.308220 0.246820 0.420451 0.392671
42 0.316903 0.278106 0.261265 0.340663 0.363474
43 0.280287 0.260034 0.239901 0.571841 0.413591
44 0.259459 0.263336 0.419063 0.440348 0.409213
45 0.318383 0.258221 0.400519 0.788129 0.519896
46 0.311886 0.246555 0.348500 0.319797 0.380750
47 0.274505 0.327321 1.054556 0.415975 0.538985
48 0.297978 0.248192 0.536444 0.368542 0.411322
49 0.326165 0.313183 0.269459 0.875103 0.525585
50 0.313074 0.306346 0.325590 0.421587 0.418631
51 0.327585 0.344874 0.292986 0.413396 0.425698
52 0.347307 0.380379 0.411005 0.383428 0.456921
53 0.276323 0.301929 0.416874 0.489554 0.436239
54 0.353970 0.433464 0.355427 0.441288 0.475476
55 0.312131 0.463306 0.417202 0.508088 0.508746
56 0.353727 0.367588 0.392770 0.654748 0.505648
57 0.440915 0.424415 0.331049 0.649548 0.558536
58 0.402615 0.387770 0.404991 0.557092 0.522803
59 0.372167 0.387991 0.513761 0.728239 0.551823
60 0.568806 0.349382 0.576206 0.731860 0.629284



Table 2 (cont.). Estimated Variance of Residual from Weighted OLS:

PSID Sample 1967—1994a

Aver— less high some college all
age than school college or
for HS more
Age

25—39 0.342060 0.282701 0.274401 0.316297 0.340453
46—60 0.351944 0.352180 0.443121 0.530550 0.489763

a. As in Table 1: men only; no poverty sample; ages max{education+ 6, 16} to 60; work hours
adjusted upward to minimum 1750 hours/year.



Table 3. Maximum Likelihood Precision Estimates (Standard Deviation):

PSID Sample 1967—1994a

Para— less high some college all
meter than school college or

HS more

hµ 2.3882 2.6407 2.6428 2.4991 2.2968
(0.0963) (0.0707) (0.0947) (0.0762) (0.0359)

hη 2.4195 2.5894 2.6326 2.4747 2.4952
(0.0300) (0.0191) (0.0246) (0.0201) (0.0109)

hµ∗ 1.9724 2.0141 2.0213 1.1856 1.5614
(0.0690) (0.0751) (0.1260) (0.0573) (0.0324)

hη∗ 2.8461 2.6717 2.4546 2.4879 2.6286
(0.0383) (0.0349) (0.0526) (0.0412) (0.0202)

ρ 0.7955 0.7165 0.6471 0.5749 0.7009
(0.0405) (0.0390) (0.0671) (0.0530) (0.0217)

a. As in Table 1: men only; no poverty sample; ages max{education+ 6, 16} to 60; work hours
adjusted upward to minimum 1750 hours/year.



Table 4. Parameter Values
and Empirical Ratios

Name Value

Parameter

ξC .25
ξS .50
ξR .85

consumption growth with age .02
τ .231
g .01

Social Security tax rate .1052
r .05
hµ 2.2968
hµ∗ 1.5614
ρ .7009

Age

adulthood 22
child bearing 24

M 45
retirement 64

T 90

Ratio

aggregate net worth/labor earnings 4.610

Source: see text.



Table 5. Simulation Results: Ratio A
w·E for Base—Case Calibration

γ = 0 γ = −1 γ = −1.5 γ = −2 γ = −4

Uncertainty Case
3.167 3.380 3.475 3.564 3.868

Certainty—equivalent Case
2.679 2.679 2.679 2.679 2.679

Certainty Case
3.209 3.209 3.209 3.209 3.209

[Row 1 - Row 3] ÷ Row 3
-.013 .053 .083 .111 .205

Uncertainty—Case A/(w · E) ÷ empirical ratio
.687 .733 .754 .773 .839

Implied Subjective Discount Rate δ
.018 -.002 -.012 -.022 -.063

Source: see text.



Table 6. Simulation Results: Ratio A
w·E for Alternative Calibrations

γ = 0 γ = −1 γ = −1.5 γ = −2 γ = −4

Calibration with ĉt = .015

Uncertainty Case
2.514 2.704 2.791 2.873 3.152

Certainty—equivalent Case
2.057 2.057 2.057 2.057 2.057

Certainty Case
2.633 2.633 2.633 2.633 2.633

[Row 1 - Row 3] ÷ Row 3
-.045 .027 .060 .091 .197

Uncertainty—Case A/(w ·E) ÷ empirical ratio
.545 .587 .605 .623 .684

Implied Subjective Discount Rate δ
.023 .008 .001 -.007 -.037

Calibration with rt = .076

Uncertainty Case
2.804 3.021 3.117 3.208 3.510

Certainty—equivalent Case
2.306 2.306 2.306 2.306 2.306

Certainty Case
2.909 2.909 2.909 2.909 2.909

[Row 1 - Row 3] ÷ Row 3
-.036 .039 .072 .103 .207

Uncertainty—Case A/(w ·E) ÷ empirical ratio
.608 655 .676 .696 .761

Implied Subjective Discount Rate δ
.037 .018 .008 -.002 -.042

Source: see text.



Table 7. Simulation Results: Ratio A
w·E for Alternative Values of ξC and ξR

γ = 0 γ = −1 γ = −1.5 γ = −2 γ = −4

Calibration with ξC = .50

Uncertainty Case
2.562 2.768 2.863 2.952 3.257

Certainty Case
2.795 2.795 2.795 2.795 2.795

[Row 1 - Row 2] ÷ Row 2
-.083 -.010 .024 .056 .165

Uncertainty—Case A/(w · E) ÷ empirical ratio
.556 .600 .621 .640 .707

Calibration with ξR = .80

Uncertainty Case
2.961 3.171 3.265 3.353 3.652

Certainty Case
3.019 3.019 3.019 3.019 3.019

[Row 1 - Row 2] ÷ Row 2
-.019 .050 .081 .111 .210

Uncertainty—Case A/(w · E) ÷ empirical ratio
.642 .688 .708 .727 .792

Calibration with ξR = .90

Uncertainty Case
3.370 3.585 3.682 3.772 4.087

Certainty Case
3.397 3.397 3.397 3.397 3.397

[Row 1 - Row 2] ÷ Row 2
-.008 .055 .084 .110 .203

Uncertainty—Case A/(w · E) ÷ empirical ratio
.731 .778 .799 .818 .887

Source: see text.



Table 8. Simulation Results: Ratio A
w·E for Table 3, column 4,

Precisions and Correlation Coefficient

γ = 0 γ = −1 γ = −1.5 γ = −2 γ = −4

Uncertainty Case
3.520 3.871 4.017 4.153 4.587

Certainty—equivalent Case
2.445 2.445 2.445 2.445 2.445

Certainty Case
3.604 3.604 3.604 3.604 3.604

[Row 1 - Row 3] ÷ Row 3
-.023 .074 .115 .152 .273

Uncertainty—Case A/(w · E) ÷ empirical ratio
.763 .840 .871 .901 .995

Implied Subjective Discount Rate δ
.018 -.002 -.012 -.022 -.063

Source: see text.
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