Life-Cycle Models: Lifetime Earnings and the Timing of Retirement

John Laitner

The University of Michigan

and

Michigan Retirement Research Center

August 10, 2007

Policy Issue

• Fertility and mortality patterns are leading to an aging population. This potentially affects the solvency problems of a number of important public programs.

• The effect will likely be greater if retirement ages trend downward.

• This paper examines the question: Do rising standards of living lead to a trend in retirement ages?

Idea of this Work

• We attempt to use cross-sectional lifetime earnings differences among households to study the connection between higher earnings and retirement age.

• The rich data resources of the Health and Retirement Study, with its linked lifetime earnings records, offer an opportunity to study the connection in detail.

Theoretical Framework

• Economists' often use the so-called "life-cycle model" to study households' lifetime behavior. In the model, each household's behavior reflects the solution of a dynamic utility maximization problem with lifetime budget constraints.

• This project's intent is to work in the context of the life-cycle model — with a general enough specification to encompass a variety of possible correlations between household earnings and retirement.

Life–Cycle Setup

$$\max_{c_t,R} \int_0^R e^{-\rho \cdot t} \cdot u(c_t,t,R) dt + \varphi(a_R,R)$$

subject to:
$$\dot{a}_t = r \cdot a_t + y_t - c_t$$
,

$$a_0=0\,,$$

where

$$\varphi(A, R) \equiv \max_{c_t} \int_R^T e^{-\rho \cdot t} \cdot u(c_t, t, R) dt$$

subject to: $\dot{a}_t = r \cdot a_t - c_t$,

$$a_T \ge 0$$
 and $a_R = A$.

Formulation (II): Additive Preferences

"Free endpoint condition" for optimal retirement:

$$\frac{y_{R-}}{[c_{R-}]^{1-\gamma}} = \Gamma \,.$$

Modeling Strategy

- Focus on couples.
- HRS data:
- •• Extensive
- •• Censoring issues
- •• Short earning histories for many wives

• Use MLE methods and random effects earnings dynamics model for men and for women. Summary index of earnings for each, μ_i^m and μ_i^f .

Modeling Strategy (cont.)

• Assumptions about behavior:

•• Wife retires either before or with husband; benefits of retirement accrue to household after both have retired

•• Households fall into 3 sets — N, S, and O – and the sample's distribution into these sets is independent of μ_i^m and μ_i^f

Modeling Strategy (cont.)

• Limited covariates at this point (more in future)

• Men who are disabled at retirement treated as if their actual retirement age is a lower bound for their desired retirement age

Estimation

• Free endpoint and other first–order conditions yield equation

$$\Psi(R_i, Z_i, \psi(R_i, \mu_i^m, \mu_i^f)) = 0$$

for household i

• We have

$$\psi \equiv \ln\left(\frac{y_R^m + y_R^f}{Y_R^m + Y_R^f}\right) + \gamma \cdot \ln(Y_R^m + Y_R^f).$$

Estimation (cont.)

• Implicit function theorem and linearization yield

$$R_i = Z_i \cdot \xi + x_i \cdot \alpha_0 + \bar{x}_i \cdot \alpha_1 + \eta_i$$

•• We estimate the latter jointly with the earnings dynamics equations

• x_i and \bar{x}_i depend on μ_i^m and μ_i^f and on the given household's set N, S, or O

Analysis of Possible Outcomes

• Cases for Formulation II:

•• $\gamma > 0$ implies upward time trend in retirement age

•• $\gamma = 0$ implies no time trend in retirement age

•• $\gamma < 0$ implies downward time trend in retirement age

Analysis of Possible Outcomes (cont.)

• Sufficiency condition for free endpoint restriction requires

$$\alpha_0 > 0.$$

• We have

$$\alpha_1/\alpha_0 = \gamma \,.$$

• Thus, α_1 should have same sign as γ

Preliminary Outcomes

Retirement E	quation:	
Male 16-17 Y	rs Education	
Sample: 398	households	
Coefficient	Estimate	Std Error
DUM26-28	0.747371	1.675168
DUM29-31	-0.076558	0.656037
DUM32-34	-0.058474	0.480915
DUM35-37	-0.052306	0.371783
DUM38-40	0.359175	0.414408
DUM41-43	-0.078523	1.003423
h_η	0.196031	0.011516
$lpha_0$	7.584181	4.092284
$lpha_1$	0.971501	0.999989

ADDENDUM:

 γ 0.128096

Preliminary Outcomes

Retirement E	quation:	
Male 12 Yrs I	Education	
Sample: 479	households	
Coefficient	Estimate	Std Error
DUM26-28	-1.072518	1.451929
DUM29-31	0.819704	0.472764
DUM32-34	-0.559213	0.369712
DUM35-37	0.622135	0.304719
DUM38-40	-0.392488	0.364465
DUM41-43	2.893666	1.182520
h_η	0.224585	0.009617
$lpha_0$	-5.044323	3.971068
$lpha_1$	-1.947537	1.060381

ADDENDUM:

 $\gamma = 0.386085$